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PREFACE

At the beginning of the last century the kinetic theory for single-sited enzyme system was
formulated and the technique of their full kinetic analysis was refined. Its essence consisted in the
transformation of hyperbolic function into a rectilinear dependency, that is characteristic of only
single-sited systems. Later on, however, it was found that many enzymes because of their muiti-site
feature are characterized by curve-linear kinetic dependency.

This necessitated to formulate principles for kinetic analysis of such curves and to work
out new kinetic parameters. In spite of multiple attempts made in this direction this goal has not
been achieved. The monograph is concemed with theoretical basis for deciphering the molecular

mechanism for the multi-sited enzyme systems, and relying on experimental data, statistically valid

methods for the determination of fundamental kinetic parameters is set forth.

© Z.XKometiani, 2007
ISBN 978-99940-66-30-8



Chapter 1. INTRODUCTION

1.1. A notion of enzyme
Enzymes, catalysts of chemical reactions play a special role in the functioning of biological
systems. Life is dependent on enzyme stipulated chemical reactions any change of which exerts a
crucial influence on the normal functioning of these systems. Accordingly, study of the molecular
mechanisms of the enzyme activity has a great importance. To solve these problems is the subject
of study of enzyme kinetics.

The term “ferment” has been in use in the Russian literature, while in the English literature
the term “enzyme” has been used. The term “ferment” is more common in Georgia, while the
science concemed with the study of ferments is commonly called enzymology.

Enzymes are biological catalysts of protein nature. They take part in thousands of chemical
reactions occurring in the cell. Enzymes are the essential components virtually of all biological
machinery. Enzymes as catalysts act on the chemical reactions rate and have no effect on the
equilibrium (i.e accelerate with equal degree both the direct and reverse reactions).

Enzymes are characterized by a high specificity in respect to both the reactions catalyzed
by them and to substrate. Each enzyme accelerates one or several related chemical reactions. As a
rule, the degree of specificity is very high, sometimes even absolute. Enzymes usually work in co-
operation. Often, the product of one enzyme reaction is a substrate for the subsequent one.

Some enzymes, for instance pepsin, consists of only protein molecules, while others are
composed of two components, of which one is of protein nature (apoenzyme), while the other is, as
a rule, of non-protein nature (cofactor). The role of a cofactor can be performed by metal ions, or a
complex organic compound which are called co-enzymes. Cofactors are thermostable compounds,
whereas the majority of enzymes are inactivated at high temperature. Frequently, their isolation
from the enzyme is possible by way of dialysis, though occasionally they are closely bound with
apoenzyme and in that case, they are referred to as a prosthetic group. Neither apoenzyme nor
coenzyme individually possess any catalyzing activity and they have enzyme activity only while
acting in harmony. It is remarkable that a cofactor may be considered as a necessary activator, for it
is virtually impossible to find experimentally any difference between them.

In the case of most enzymes, only a small part of the enzyme molecule, the so-called active
centre, interacts with the substrate. It contains amino acid residue, which are directly concerned
with the formation of chemical links with the substrate, or with its cleavage. The active centre is a

three dimensional structure in the form of a narrow concave or cleft, which by its form precisely fits
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the substrate. However, the active centres of some enzymes do not represent a rigid structure and
modification of its form occurs at substrate linkage.

The active centre of similar enzymes renders complementary to the substrate only after
linkage with it. The active centre constituent component is an “active catalytic ” region, which
directly iateracts with the substrate and contact region which provides specific affinity and
formation of enzyme-substrate complex.

It is necessary for enzyme catalyzing activity that its molecule possesses specific spatial
conformation which considerably changes in the course of catalyzing cycle and at the end of the
process assumes the same conformation as it had at the start of the cycle.

Thus, the enzyme is the most important protein compound without which it is impossible

for thousands of chemical reactions to occur in the cell and, accordingly, existence of live

organisms. !

1.2. Enzyme classification

A specific feature in which each enzyme varies from others is the chemical reaction which
it catalyzes. Therefore, logically, this feature underlies the enzyme classification and nomenclature.
Enzymes by the type of catalyzed reaction fall into groups and subgroups which more precisely
characterize this reaction.

The name of enzymes is made up of: a) name of a substrate and b) the word ending in ‘ase’
and defines the type of reaction catalyzed by all enzymes of the group, to which this enzyme
belongs. It is also often given trivial names not involving chemical information. These are, for
example, pepsin, trypsin, catalase, etc.

In accordance with the classification worked out by the Nomenclature Committee of the
International Union of Biochemistry enzymes fall into six main classes. These are:

1. Oxidoreductases participating in the oxidation-reduction reactions.

2. Transferases which transfer functional groups.

3. Hydrolases responsible for the reaction of hydrolysis.

4. Lyases carry out cleavage from or attachment of certain groups to the substrate through
non-hydrolytic way by formation of double links.

5. Isomerases responsible for isomerization reactions.

6. Ligases joining two molecules at the expense of ATP.

It is worked out a system of enzyme numeration. Every class falls into subclasses and sub-
subclasses. Code of every enzyme contains four numerals which are divided from each other by

points. The first numeral indicates to which class the given enzyme belongs; the second indicates
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the subclass; the third indicates the sub-subclass, while the fourth is the order number of the enzyme
in the sub-subclass.

Thus, every enzyme has an identification number (code) and systematic name. However,
many systematic names are long and that’s why trivial names are often applied. Thus, for instance,
the trivial name of Na* and K" activated, Mg" -stimulated adenosin-triphosphatase (EC 3.6.1.3) is
NaK-ATPase.

1.3. Study of enzyme action

Enzymology as a discipline concemed with a thorough study of enzymes is distinguished by
diversity and complexity, due to the diversity and complexity of the aims and methods. This will be
evident from the text below that is a quotation from the well-known book by Dixon and Webb
entitled “Enzymes” where the topics related to studies of a number of enzyme features are
considered.

1. Biological properties implying the importance of participation of enzymes in the
metabolism and conjugation of interaction of different enzymes; enzyme distribution in a variety of
living organisms and tissues; intracellular localization; enzyme synthesis and genetics; effect of
genetic mutations; existence of isoenzymes; effect of enzyme deficiency on the organism; a
biological effect of enzyme selective “poisoning”; antienzymes.

2. Protein properties: homogeneity, number of isoenzymes, sedimentation and diffusion
coefficients, molecular shape (central axes ratio), titration curve, isoelectric point, electrophoretic
motility, hydration rate, stability to heating and irradiation, dissociation into subunits, absorption
spectrum, etc.

3. The structure that implies: the amino acid content; sequence and number of amino acids;
chain “wrapping” and tertiary structure of molecules; specific groups and metal atoms; number and
nature of active groups within the enzyme molecule; number of SH-groups and their influence on
enzyme activity; action of chemical reagents.

4. Enzyme properties, namely, nature of the reaction catalyzed by it; in the case of
coenzyme involvement, type of its nature and action; substrate specificity, substrate chemical
structure peculiarities required for its binding to the enzyme and reaction performance;
stoichiometries specificity; action specificity with inhibitors.

5. Characterization of the active centres that implies: number of active centres in a
molecule; their chemical structure, its effect on the substrate when linked to the active centre;
reaction mechanism; character of active groups, in the case of their availability.

6. Thermodynamic properties, namely the enzyme reaction reversibility and equilibrium

constant; temperature coefficient; thermal effects; free energy and entropy values of enzyme-
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substrate linkage, enzyme-substrate complex activation, its conversion into enzyme-product and
into free enzyme of this complex and dissociation product; enzyme affinity to substrate; Michaelis
constant; pH effect on the enzyme affinity to a substrate; enzyme affinity to inhibitors; inhibitors’
concurrence with the substrate.

7. Kinetic features. Namely, specific activity; molecular activity; absolute activity
calculated per one active centre; velocity constant of enzyme linkage to a substrate; substrate and
product dissociation constants; cumulative reaction rate constants; effect of activators; allosteric
effects; reaction sequence; pH effect; reaction rate analytical equation.

It should be noted that a small number of enzymes have been studied considering all the

above features. Especially it concerns the enzymes kinetic analysis, establishment of their molecular

mechanism.

1.4. Enzyme rate estimating parameters

The enzyme rate is dependent on many a factor and physical-chemical parameters. Among
them the basic one is the enzyme amount, concentrations of substrate, cofactor and modifiers. In
addition, the enzyme rate is much affected by a reaction medium: its ionic content, ionic power, pH,
temperature and other thermodynamic parameters. Therefore, in the case of relative analysis of
enzyme rate, it is necessary that the optimal and steady state reaction medium be maintained (in
standard conditions). One must be aware of the range of ionic content, pH and temperature at which
the enzyme is stable and maintains maximal activity. While concentration of substrate and cofactors
should be within the saturation concentration ranges to ensure that only the enzyme concentration
remained a determinant factor for reaction rate and not be dependent upon substrate and coractors’
concentration. Standard conditions imply optimal content of reaction medium and 30° C
temperature as recommended by the International Biochemical Association. Although it is
remarkable that in the case of warm-blooded animals, the enzyme rate is often measured at 36-
37°C.

The basic characterizing parameter for enzyme is its activity. It is determined as the
amount of substance converted by one or a definite amount of enzyme in time unit. The main
problem while measuring the rate is to ascertain the enzyme amount. Even in the conditions of
exhaustive information accurate measurement of its amount is impossible. The enzyme rate is,
therefore, reflected by means of three different units: molecular activity, number of rotations, and
specific activity.

If it is possible to determine the number of enzyme molecules in an incubation solution,
then we can use a single molecular activity. Molecular activity implies the amount of substrate

converted by one enzyme molecule in a time unit or that of product (mol/ min).
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If it is possible to determine the number of enzyme active centers, the term rotation number
is used. Rotation number is the amount of substrate converted by one active center in a time unit or
that of the product (mol/ min).

Suppose it is impossible to determine the amount of an enzyme or the number of its active
centers. Let’s consider that the enzyme is evenly distributed in protein, i.e. the enzyme amount is
directly proportional to that of the protein, it is then possible to determine enzyme rate as specific
activity. Specific activity is the amount of substrate converted per time unit (min) or the amount of
the end product (mol) per one unit of protein amount (mg). One may use different units (mol, mmol,
umol, etc) reflecting the amount of a substance. As well as different units of mass (kg, mg, g, ng,
etc) and of time (hour, min, sec, etc). For instance, pmol Pm/hour 1 mg protein is frequently used as
a unit of NaK-ATPase activity.

As has been already mentioned, enzyme amount is determined by means of rate of the
reaction catalyzed by it. Therefore, in enzyme exploit methods accurate measurement of reaction
rate has been of utmost importance. One requires a simple and facile analytical method which
allows us to determine the rate of substrate conversion or end product and statistical treatment of
results. This problem will be discussed in details later on. This problem is also coupled with the
necessity of initial rate measurement, as the course of a reaction is attended by reduction of
substrate concentration, i.e. stability of reaction medium is disturbed. Therefore, measurement of
approximate rate to the origin is satisfactory. Satisfactory is regarded the situation when the
substrate concentration does not alter by more than 10%. Exception makes oxidation-reduction
processes whose substrate (or product) has, as a rule, a narrow absorption spectrum, a distinct
maximum. It is then possible to use double beam spectrophotometer accurate measurement of

original rate (substrate amount by means of tangent plotting at zero point on time graph).

1.5. Reaction order

Simple and complex reactions are distinguished in the chemical kinetics. Simple reactions
take one stage and mainly involve unidirectional acting. To complex reactions are attributed: 1)
reversible reactions which proceed in both directions; 2) parallel reactions when several reactions
occur simultaneously in different directions and each yield a different product; 3) consecutive
reactions taking place concomitantly and performed in several stages. The end-product of the first
stage 1s an intermediate substance and starts the second stage, etc. 4) conjugate reactions; 5)

parallel-consecutive ones; 6) consecutive-branching reactions and 7) cyclic ones.



Chemical reactions can be characterized by molecules or order. Molecularity is determined
by number of molecules converted in the reaction. Thus, for example, reaction A—P is
unimolecular or monomolecular; A+B—P is bimolecular, while A+B+C—P is trimolecular.

Reaction order is, in a reaction equation, the number of concentration members multiplied
by each other. According to how, in the given circumstances, reaction rate is dependent upon
reacting substance concentration reactions of the first, second, third and zero order are
distinguished.

The reaction whose rate is proportional to one reacting substance concentration are
attributed to the first order.

Second order reactions are those whose rate is the product of two reacting substance
concentrations, or is proportional to the quadrate of one of the substances concentration. It should
be pointed out that reaction A+B—P does not always proceed as the second order reaction. In some
cases, it may occur as the first order one. Thus, for instance, if concentration of A substance is much
greater than that of B substance, this reaction then would be of the first order in respect to B
substance, as its rate would be proportional to the concentration of only one reacting substance (in
this case of B substance). Such reactions are referred to as pseudo-first order.

The rate of third order reactions is proportional to the product of three reacting substances
concentrations.

Reactions whose rate is not dependent upon reacting substances concentration are called
zero order ones. In this case, reaction rate depends on the concentration of catalyst or on any other
factor, but not the reacting substance concentration.

For simple reactions which take only one stage, or for a separate stage of complex
reactions, the reaction order usually coincides with molecularity. For several consecutive
unimolecular and bimolecular stages occurring complex reactions it is not necessary that full
reaction molecularity be coincident with its order. It should be noted that reversed reaction
molecularity and order does not frequently coincide with direct reaction molecularity and order. The
reactions whose molecularity is more than two are very common. While the reactions whose order
is more than two are quite rare. Thus, for example, trimolecular reactions do not, as a,,:ﬁle, proceed
in one stage, they and consist of two or more elementary stages. If one of the stages is far slower
than others, then the full reaction rate would be equal to the slow (so-called limiting) stage rate. If
the limiting stage is not distinct, then the reaction rate equality, as a rule, has a complex form and is
characterized by a non-stable order.

The graph, that reflects dependence of reaction rate log on reacting substance

concentration log, is a circle whose slope would be equal to the common slope. Reaction order is, as
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a rule, determined in respect to each reagent, reaction order is defined individually. For this,

concentration of the given reagent is altered at a constant concentration of other reagents.

1.6. Effect of temperature on reaction rate

As mentioned above, reaction rate strongly depends on temperature. Thus, for example, as
temperature increases by every 10°C reaction rate increases approximately twice. Therefore, in
order to get significant results in kinetic experiments, strict control over temperature is necessary.
Besides, temperature dependence can be used for the purpose of gaining information concerning
reaction mechanism.

All contemporary theories which explain dependence of velocity constants on temperature
are underlined by Van’t Hoff and Arrhenius exploits. They have compared the known properties of
equilibrium constant with kinetic data and made an attempt to ascertain this dependence. At
absolute temperature (T) variation the equilibrium constant (K) alters in terms of Van’t Hoff
equation:

dink AH
“dT  RT*

where, R is gas constant, AH® is a standard enthalpy change in the course of the reaction. In an

(1.1)

analogous way, Arrhenius formulated an equation reflecting velocity constant alteration at
temperature change
dink _E,
dT RT

(1.2)

where, E, is activation energy. By integration of T in this equation we get:

Ea

Ink=InA - (1.3)
RT
where, InA is an integration constant.

gk

3 1 2.303R

Fig 1.1 Arrhenius graph
25 A
1w
T
2 —_—

2,9 3,1 33 35 37
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This form of Arrhenius equation is convenient for plotting graphs of results, as Ink=A{1/T)
dependence denoting graph is a line whose slope is equal to —E4/R (in practice a circle Igk= £1/T)
with a slope (-Eo/2.303 R). This graph is known as Arrhenius graph and by means of it E,-value
(Fig. 2.1) can be readily determined.

To explain physical essence of activation energy let’s write the equality (2.3) as follows:
k=Aexp(-E«/RT). The exponential member exp(-Eo/RT) is often called Boltzmann multiplier, as in
accordance with Boltzmann’s theory, in the mixture the number of the molecules whose energy is
more than E, is proportional to exp(-E«/RT) value. Accordingly, the Arrhenius equality can be
interpreted in the following way: “Molecules can participate in the reaction only when their energy
exceeds the definite threshold value — activation energy”. According to this interpretation, constant
A must be equal to molecules strike frequency (z). In gas phase, for some reactions, the coefficient
A is really equal to z. Though in a general case it is necessary to introduce additional multiplier (P)
{k=Pzexp (-Eo/RT)} and assume that for a chemical reaction to occur, molecules should have not
only sufficient energy, but they should be definitely oriented to each other. In this case P quantity

would be probability of straight disposition of molecules to each other.

igV
t39 Fig. 1.2. NaK-ATPase aclivity log (IgV) vs.
g - inverse value of absolute temperature (the brain
microsomes). Critical temperature 23.5°C; activation
0.5J energies 24 Kcal/mol (15-20°C and 13 Kcal (25—40°C)L.
. Tsakadze, Z. Kometiani. Bull. Georgian Acad. Sci., 1970,

31 32 33 34 35 00N2,445-452.

/T 10*

Dependence of the reaction rate on the inverse value of absolute temperature is not always
rectilinear. Frequently, the slope of a graph changes (Fig. 1.2) and assumes a broken form. This
indicates that there occurs activation energy variation. There may several reasons: 1) change of a
solution phase; 2) Existence of two parallel reactions having different temperature coefficients; 3)
Existence of two successive reactions having different temperature coefficients; 4) Existence of an
enzyme in two different forms of activity; 5) Reversible enzyme inactivation; 6) Variation of slope

(activation energy) occurs only on the direct reaction graph.
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1.7. Transient state theory

Any chemical reaction, say A—>P, proceeds because some part of A substance molecules
in any given moment possesses more energy than other parts of molecules and this energy is
sufficient for passing to the active state. Activation energy is the energy that is necessary for all
molecules of one mol substance be turned into an active state at a given temperature.

When the reacting system “moves” across the imaginary “reaction coordinate”, it passes
through different energy states on a continuous spectrum (Fig. 1.3). Thus, all chemical reactions at a
definite stage passes through this state which is characterized by maximal energy and is called the
transient state. The transient state theory associates chemical reaction rate with thermodynamic
properties of the molecules being in the transient state.

Chemical reaction may be fancied as follows: A +B < X* - P + Q, where, X" is a
transient state. It is considered that X' concentration measurement is governed by the

thermodynamic laws, therefore [X*=K*[A][B]. For K* constant the following thermodynamic
equation being appropriate: AG* = -RTInK” = AH* — TAS*

Fig. 1.3. Reaction profile in terms of
transient theory. Reaction co-ordinates are

expressed schematically on the axis of

abscissa.

g I n o-e < “Reaction co-ordinates”

where, A*, AH* and A" denote respectively, the transient state forming free energy, enthalpy and
entropy. The activation enthalpy and entropy quantity provides information about the nature of the
transient state and accordingly, about the reaction mechanism. High value of activation enthalpy
indicates that for the formation of transient state strong state, distortion and sometimes even
cleavage of chemical bonds are necessary. Activation entropy characterizes reality of transient state
existence without taking into account energy processes. If AS* value is high and negative, then to
form the transient state the reacting molecules should assume a strictly determined conformation
and should approach each other at a definite angle. It is remarkable that a catalyst increases the

reaction rate through AH" or AS?, or reduction of both values.
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Chapter 2. CLASSICAL KINETICS OF
ENZYME SYSTEMS

2.1. Measurcment of enzyme reaction rate

A typical curve reflecting enzyme reactions is represented in Fig. 2.1. When reaction rate
decreases, this can be due to different causes, for instance: a) formation of reaction products; b)
substrate concentration reduction in the course of reaction; c¢) temperature or pH instability; d) in
incubation solution because of admixtures an enzyme (or coenzyme may undergo inactivation, etc). In
some cases, several causes listed above may act simultaneously. Because of this, enzyme reaction

curves are not, as a rule, described in terms of ordinary equalities used for homogeneous chemical

reactions, and it is rather a hard task to achieve equalities for experimental curves.

Fig.2.1 . A typical curve of reaction course in the
case of a single-sited enzyme (A multi-sited

enzyme may have a complex geometrical shape)

Amount of
converted
substrate

Time

To avoid this complication, other approaches are applied to enzyme reaction studies. Namely,
original reaction rate is determined, as in the initial period the mentioned factors fail to reveal their
activity. Therefore, while working at enzymes it is accepted, at constancy of other factors to make
observation on reaction initial rate at variable rate determining any one of the factors.

To the main determinant factors for enzyme reaction initial rate are attributed: enzyme and

substrate concentration, pH, temperature and activators, or availability of inhibitors.

2.2. Effect of enzyme concentration on reaction rate

The enzyme reaction rate is, as a rule, proportional to enzyme concentration (Fig. 2.2. B),
certainly if dissociation-association of enzyme complex is ruled out. However, in some cases it is still
noted a deviation from linearity within small and large concentration ranges of an enzyme, this is often

due to imperfectness of activity determination system. Occasionally, such a deviation is a result of

properties of enzyme preparation or incubation solution.
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linearity follows from enzyme activity measurement, therefore it is required for correct

information that experiment be carried out within linearity ranges.

Vv A B \
e (C F
D
E
& el

Fig. 2.2. Amount of the substrate converted per one time unit vs. enzyme amount (E).

1. Convex curves. Convexity of V=f(E) dependence is due to two main causes:

a) Existence of high toxic admixture in minute amount in the reaction medium and not in
enzyme preparation itself. This admixture “poisons” the first portion of added enzyme. Afterwards,
when the amount of added enzyme (or other protein available in enzyme preparation) will exceed the
amount required for inhibition of toxic admixtures, enzyme activity will completely recover and a
normal rectilinear dependence is achieved. The rectilinear section on the origin of coordinates is shifted
to some distance, that is proportional to the amount of toxic admixture (Fig. 2.2 E).

b) Availability of dissociable activator or coenzyme in the enzyme preparation. At this time
active complex EA(E+A=EA) is formed. Respectively, the share of the enzyme being in active form
increases in the incubation medium as increases the enzyme concentration. In the given case activator
enters into system together with enzyme preparation and that is why, as enzyme concentration
increases its still more part would be in active form and V={(E) dependence curve would be conéave.
At simple stoichiometries 1:1 for which equality E+A=EA is responsible, reaction rate dependence on
protein concentration must be of second degree, but at high concentration when the enzyme is
completely saturated with an activator, the rate will be proportional to protein concentration (Fig. 2.2
D).

Extremely interesting is the case when the enzyme is a set of subunits of which each one

separately is inactive. It may be considered that the given subunit becomes activated at interaction with
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another subunit. Concentration increase conditions aggregation of subunits, therefore the graph of rate

dependence on enzyme concentration will have a convex curve form.

2. Concave curves. The curve of reaction rate dependence on enzyme concentration in this
case turns to plateau, i.e., attains imaginary threshold velocity (Fig. 2.2. C). Such a deviation from
linearity occurs more frequently than the cases described above and can be accounted for by several
reasons:

a) Imperfectness of measurement method and actual reduction of inactivity. When
determination of the given enzyme activity requires addition of another enzyme, the second enzyme
activity may become a reaction rate limiting factor as a result of which a curve similar to that given in
Fig. 2.2. C can be obtained. At the increase of amount of the second enzyme the rate will also increase
and a circle is obtained (Fig. 2.2. B). A similar pattern will be also in the case when in this system
amount of one enzyme changes while that of others remains constant. Until the amount of the given
enzyme is relatively small, general velocity of the process will be proportional to the concentration of
this enzyme. When concentration of this enzyme will become sufficiently high, reaction rate limiting
will become concentration of another enzyme.

b) If a pure enzyme can be available to the investigator, then it becomes possible to add it in a
very large amount to the explored system. If at this time the enzyme possesses rather high affinity to
any component of this system, say to coenzyme, then the whole coenzyme will be bound with this
enzyme and the coenzyme will be inaccessible for other enzymes of the system. In this case, as enzyme
concentration increases, complex enzyme reaction rate will be reduced (Fig. 2.2. F).

c) The curves similar to the one in Fig. 2.2. C are achieved also in the case when was
measured not the initial velocity, but the change resulting from the reaction in a definite time section. A
similar result is caused by substrate depletion and does not indicate the non proportional dependence
between the initial velocity and enzyme concentration.

d) If enzyme preparation contains a reversible acting inhibitor which when linked with the
enzyme forms an inactive complex, then on increasing in the mixture of inhibitor’s concentration the
share of the enzyme being in inactive state will also increase. As at this time inhibitor is added together
with an enzyme, therefore occurs a concomitant rise of enzyme and inhibitor concentration, due to
which activity at high concentration of the enzyme will be far smaller than it would be expected from
the initial rectilinear dependence, resulting in achievement of a monotonously concave curve.

The concave form of enzyme concentration depending reaction rate curve might also be due to

polymerization of the enzyme in question, if its dissociated form is active.
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In spite of the above named reasons, in most cases a direct proportional dependence between
enzyme concentration and the reaction initial velocity is maintained.

Specific activity of an enzyme (V) is direct proportional to enzyme velocity (V) and enzyme
amount (e,). Equality v=Ve, is achieved. Therefore, further on in the case of theoretical studies we

shall use V (rate) value.

2.3. Effect of substrate concentration on cnzyme reaction rate

One of the important determinant factors of enzyme reaction rate is substrate concentration.
Enzyme reactions in contrast to non-enzyme ones are characterized by substrate saturation. For simple
enzyme reactions (A—P), at a low substrate concentration, reaction rate increases in proportion to
substrate concentration, i.e. reaction is of the first-order in respect with substrate. At substrate
concentration increase reaction rate increases gradually slower and proportional relation gets disturbed
(in this concentrate region reaction is of a mixed-order). At further rise in substrate concentration
reaction rate will be constant and will not depend on substrate concentration (reaction in respect with
substrate will be of zero-order), will occur enzyme saturation with substrate. In these circumstances the
reaction rate limiting factor will be enzyme concentration. Saturation effect is characteristic of all
enzymes, it differs for different enzymes and is highly distinguishable from each other.

Studies of enzyme with substrate saturation effect Michaelis and Menten (1913) led to the
formulation of general theory of enzyme kinetics. According to Michaelis and Menten, the following

generalized mechanism govemns the enzyme reaction:

kyy Key (2.1)
E+S ? ES— E+P
Michaelis and Menten made an assumption that the reversible stage is rapid and concentration
of intermediate ES complex concentration is expressed as follows: [ES]=x=es/K;, where K is the
equilibrium constant K=K ;/K:; and e — enzyme concentration. It is remarkable that direct
measurement of enzyme (e) and substrate (s) instant concentration is impossible, therefore it is
measured by a convenient sum concentration: e,=¢+x and s,=s+x. As it follows from the first equality,
X cannot exceed €,. So, if s, is much more than e,, then it would be far greater than x and can be
considered that s= s,, then
ok, eok,,8
1+(K/s) s+Kg

v=k,,x= 2.2)
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Similar results have been obtained by Van Slyck and Cullen. They considered the first stage of

enzyme reaction as an irreversible step: E + S Ei_, ES ﬁ. E + P . Certainly, in this case x is

. dx
reflected through the equilibrium constant and we get: e k (e, —x)s- k,,x

Van Slyck and Cullen regarded the intermediate compound concentration as being constant,
k. e, . . P .
i.e. dx/dt=0; therefore, x =k—i1°(—. In this case too, the reaction rate equation is identical to
+2 + +lS
equality 2.2 and to find the difference between them experimentally is not feasible.
Briggs and Haldane offered a generalized mechanism which involved the both particular cases

described above:

ka Key
E+S @ ES—» E+P
k,

wherefrom, dx/dt =k, (e, —x}—k_x—k,,x

If we consider that in the course of reaction a stationary equilibrium is achieved in which the

intermediate compound concentration is constant (i.e. dx/dt=0) then reaction rate assumes the

ek, .s V_ . -s
following pattern: v=k ,x =—"%*2  —__max _ 2.3
gp S FET T 2.3)
k

+1

where, Kn, is Michaelis constant which is determined by the following ratio of constants: (K.
11K+2)/K+1, while Vi, 1s maximal velocity and is determined by the product: K.+,.eo. Equality (2.3) is a
fundamental equality in enzyme kinetics and is called Michaelis-Menten equation. This equality is
performed for more complex mechanisms as well, although in this case images for K, and K., have a
more complex view. Vpa is not a fundamental characteristic of the enzyme, since it depends on
enzyme concentration, when constant K, is equal to substrate concentration then the reaction rate is a
half of maximal velocity.

From the practical point of view it would be interesting to assume that Ky, is the measure of
dissociation constant (Ks) (i.e. Ki»<<K_;), but Ky, actually is not even upper limit of K, value. Naturally
there arises a question: what is the use of K5 measurement if it cannot be used as a measure of
substrate binding rigidity. In fact, knowledge of Ky, quantity is needed for a number of reasons: 1)
during analysis of complex mechanisms it is required to reflect complex kinetic effect with maximally
simple values which describe in full the enzyme system. For this reason, under variable experimental
conditions, change of basic kinetic parameters (Ku, Vimay, Vmax/Knm) are explored. 2) While determining

enzyme activity Kn enables correct carrying out of the experiment. For this it is desirable that the



17

velocity to be measured be dependent only on enzyme concentration and did not react to small
deviations. This is achieved in the case of saturation with substrate. Practically to attain this it is
sufficient that [S]=10 K. 3) If we consider K, as the cumulation of data on dissociation constants of
substrate analogs (which act as inhibitors), occasionally it can be regarded as K; analog.

Kmn and Vg, as already mentioned, are important kinetic parameters, as they completely
determine the dependence of the given enzyme reaction rate on substrate. Operation with these
parameters yields information about the molecular mechanism of enzyme systems. v=f(s) is a
hyperbola, while V. is the asymptotic value and its precise measurement is impossible. Therefore, for
the purpose of K, and Vmax graphic plotting such methods of variables’ conversion are commonly

applied as would enable linerization of original hyperbolic dependence.

(A) 1N ®B) shv
-1/Kn K,
1/V max Km ,V max
1/s s
1 1 K, s K 1
- = + —_—n .5
M vmax Vma'xs v Vmu Vmu
Vmax
= leo--
Vmax 1
<« Slope -Kq :
\V oy’ :
;
:
Vmax 'K / Vi1 !
A
vis T -s4 T -5 K. K
v=V_ - Kn¥ V. =V + Vi k  “Direct rectilinear graph”.
s max s. m

Fig. 2.3. Methods used for graphical determination of Ky and Vmax
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These are traditional transformations: 1/v=f(1/s), (Fig. 2.4, A); s/v=f(s), (Fig. 2.4, B); v=H(v/s),
(Fig. 2.4, C) and the so-called “direct rectilinear graph”. In the case of this latter, each velocity is
measured on the ordinate, while the intersection point coordinates of the lines drawn on them would be
Km and V., values (Fig. 2.4, D).

Ilustration of these methods in a summarized way is presented in Fig. 2.3.

2.4. Steady-State principle

The steady-state principle has been introduced by Bodenstein. As Van Slyke and Cullen, so
Briggs and Haldan considered that in the course of enzyme reaction a stationary state is achieved,
during which the concentration of intermediate compound is constant, but none of them provides proof
for meeting steady-state conditions. Unfortunately they regarded that the steady-state principle is self-
evident and is always fulfilled. However, this principle is not actually fulfilled for some A+B&->C—D
type non-catalytic reactions, which at one glance resemble the Briggs and Haldan scheme and
respectively there must be steady-state.

The methods for formulating the majority of velocity equations are based on the assumption
(dx/dt=P, t is time) about a stationary course of the reaction. Thus, for example, in the case of
Michaelis-Menten mechanism it is very easy to come to this assumption. But if we assume that the
reaction proceeds steady-state, then to solve (2.4) differential equality its integration is required, as a
result the following equality (2.5) is obtained:

dx
kpegs — (ks +k +k,,

)x = [dt 24

_ Vawsl—exp[- (s +ky +k,)t] 25)
K, +s

where Vs and Ky, are determined so, as earlier. At t’s high quantity, when exponential term will get

infinitely small, 2.5 equality will assume a form of 2.3 equality.

2.5 equality type of equation, as a particular case, was formulated by Laidler (1955). He
considered the case when the reaction proceeded for a long time resulting in such a reduction of
substrate concentration that it would not have been assumed that it was equal to the initial
concentration. However, in this case too the system attains the stationary state, wherein

X = k,i€ (So _P)
k; +k,, +k,y (s -p)
where, s, is substrate initial concentration and p is product concentration. Respectively, we get:
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k+1k+2e0 (SO _p) — Vma.x (so _p) (26)
k—l +k+2 +k+l (so _p) Krn +(S° _p)
2.6 equality is identical to 2.3 equation, but here s value is altered by (so-p) value. At first glance it is

illogical to speak of the stationary state, where x is denoted by time depending p value. This paradox
can be readily explained if we bear in mind the fact that the time dependence of x value described by
2.6 equality yields a far less alteration of this value than in the transient phase (before reaching the
stationary state). Briggs and Haldan’s mechanism would alter to a less extent if we substitute dx/dt=0
assumption by assumption that dx/dt value is very small.

Taking into account the above-said, it can be said that the kinetic curve of enzyme reaction
consists of three sections (Fig. 2.4): 1) a transient section, that is described by 2.5 equation, 2) the
initial velocity section, described by 2.3 equation and 3) the section for the main course of reaction.
Here substrate and product concentrations substantially change and the process velocity drops to zero.

In this section reaction velocity is described by 2.6 equation.

|
Transient site : Steady-State equilibrium site
v V.5 f(t) : Initial velocitv sit : Main site of reaction course
=— nitial velocity site
Km +s | ¢ lty ! : = an(so —p)

& l " K, + iso + pi
- I I
e I V = Y S l
> | K, +s |
%) | |
B | |
=
S | |
@ | |
P 1 |

| l

I [

I I

I I

| |

l ]

11 I 1
102 107 1 10
t (sec)

Fig. 2.4. Reaction course in time. The reaction is governed by Michaelis-Menten

mechanism. The transient site is often referred to as the prestationary equilibrium

site. {(t) = exp[-(k+1stktks2)t]. (A. Comish-Bouden. Basis of enzyme kinetics)
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The methods for solving most of velocity equations are underlaid by the assumption on the
reaction stationary state. Therefore, while studying enzyme reaction one should be certain that the
reaction proceeds under stationary conditions. At this time, reaction rate is constant and there is a
proportional dependence between activity and time at stationary course of the reaction. The curve of
the dependence of activity on time is represented in Fig. 2.5, where at a certain time section (At) curve
is rectilinear, then deviates, indicating accumulation of the product and respectively, reduction of
activity. The value of time at which there occurs inflexion of the rectilinear curve is the value as a
result of which there is no longer a stationary course of the reaction. As has been already stated,
stationary course of the reaction occurs in the initial velocity section. Therefore, in order to be sure that
the reaction proceeds steadily, one must ascertain that the enzyme system operates in the initial 'velocity

domain,

3

! Fig. 2.5. V={(t)

slope = enzyme activity

Product
(mol/mg rotein)

Time, t

2.5. Michaelis-Menten equation and action of modifiers

In this chapter we are discussing single-sited enzyme systems, i.e. an enzyme has one
substrate and one modifier site (permissible is one site per each of different modifiers). Modifiers are
called the substances addition of which to the reaction medium results in a change of enzyme reaction
state. Modifiers, according to the kind of their action on enzyme reaction rate are divided into
activators and inhibitors. Activators have an increasing effect on reaction rate, while inhibitors reduce
it. It is clear that classification of modifiers must be based on their effect on the reaction basic
parameters.

As stated above, in the case of substrate low concentration (S<<K,) reaction rate,
v=(Vo/Ks).5=€,KS, is dqtermined by K constant, while in the case of high substrate concentration
(S5>>Km), reaction rate c=eK., is determined by K. constant. On the grounds of the effect on these
constants the type of modifiers are distinguished. (This principle has been recommended by the
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International Biochemical Society). That is, we can have specific, catalytic and mixed types of
modifiers.

A general kinetic scheme of modifiers’ action on the enzyme system was proposed by Botts
and Morales in the 50s of the last century (Fig. 2.6).

ki
‘/S;ﬂ\ Fig. 2.6. A general kinetic scheme of modifiers’ activity
E &———— ES
K. (after Botts and Morales)
XK+ IK3 XK+ [Ks E — enzyme; S — substrate; X — modifier

XE —=2+XES

K-
k2

In the case of inhibitors, reversible and irreversible inhibitors are considered individually. It is
accepted that if inhibitor treated enzyme recovers its activity during dialysis in the solution devoid of
inhibitor, inhibition is reversible, if not, it is irreversible. Reversible inhibition is characterized by
achievable equilibrium between enzyme and inhibitor. At this time, equilibrium constant is the measure
of their affinity. Efficiency of inhibitors’ action is expressed by the inhibition constant K;, which
represents inverse value (dissociation constant) of enzyme affinity to an inhibitor. Exactly the same can

be said about activators whose action is characterized by activation constant K.

vl \'a
-K; -1/K4
X 17X
Inhibition Activation

Fig. 2.7. Effect of modifiers on the enzyme velocity (single-sited system, rectilinear
dependence). V'=f(x) — inhibition; V'=f(1/x) — activation; It is implied that [S]=const.

In Fig. 2.7, V'=f(X) dependence is rectilinear. In this case the term rectilinear inhibition is
used. It may well be that V'=f(X) function is not a straight line, then the term non-linear inhibition is
employed. Occasionally the rectilinear inhibition refers to complete inhibition, while in the case of non-
linear inhibition the term partial inhibition is common. This question will be dealt with in more detzils

below, while discussing the multi-sited systems.



It is often impossible to make an absolute delineation between reversible and irreversible
inhibitors, as some inhibitors are firmly associated with the enzyme system and its removal is rather a
difficult process. That is why, reversible inhibitors which can hardly be distinguished from irreversible
ones are called rigidly linked inhibitors.

Let us consider Michaelis-Menten equation in inverse values without modifiers and in the case
of their influence:

1 1 K, ¢ 1

1 € 1 1
—=— >2=—rt—, 0) and 2*=—+ ,
V V. V.S V k. Kk (X0 V k¥ k¥.S

where k¥ and kg* are imaginary catalysts and specific constants.

((XF0); @7

If an inhibitor (I) decays the specific constant and does not affect the catalytic constant, then it

is named a competitive inhibitor, while inhibition constant is called competitive inhibition constant
KIC).

L =L[1+L), 8
kS ks I(lC

While in the case when an inhibitor acts only on the catalytic constant it is named a
uncompetitive inhibitor, and inhibition constant, non-competitive inhibition constant (Kyu).
1 X
L =—/|14+— 29
k::PP 1(C KIU
If the inhibitor affects the both constants, it is then named mixed. Instead of mixed the term

uncompetitive inhibitor is often used. The mixed inhibitors may be divided into separate subgroups.
According to the way of dependence between Kic and Kyy) constants.

If Kic<Kjy, then the term competitive inhibition is preferential, if Kic-Kw, then we may use
the term pure uncompetitive inhibition, while in the case if Kic>Kjy, then uncompetitive inhibition is
likely to occur.

By analogy, if an activator increases the catalytic constant it is named a catalytic activator and
if it increases the specific constant it is named a specific activator, when the activator by its action has
an effect on both constants, then it is referred to as mixed. Proceeding from the physical essence of the
action of a specific activator, the process is referred to as a specific activation and the use of
competitive activation is devoid of any sense, as under this term competence between the activator and
substrate is meant. Proceeding from this it is also unreasonable to use in respect to an activator. If the
reaction does not proceed without an activator, such a modifier is called the necessary activator.

Finally it should be stated that for single-sited substrate enzyme systems it is possible to

ascertain type of a modifier in inverse co-ordinate system (Fig. 2.7) by analysis of function inflexion
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(providing information about the specific constant) and the cut section on the ordinate axis (information
concerning the catalytic constant).
2.6. An altemative principle of classification of modifiers

Let us consider a single-sited enzyme system which has one site for substrate and one for a

modifier (Fig. 2.8).

Ko A koT kx T B
TN Kis, | Ko

Kos 0E0 ==—2 (0ES —

0E0 —— 0ES OES XES

Kox I I X kxf C

Kxs K ox Kxs

XEQ +——= XES 0E0 &—= XE0e———= XES
kx Kx

EX&——E0 &——= ES

Fig. 2.8. A single-sited enzyme system K,s, Kox, Ksx and K, are respective dissociation
A - [XE0]0, [0ES]#0, B - [XEO constants]=0, [0ES]=0, C - [XE0]=0, [0ES]=0:

D — one site for substrate and modifiers

Let us assume that the system is in rapid equilibrium, interaction between the sites is

permissible and A =k, /k, , then we’ll have:

[0ES]= Ki[OEo] ; [0EX]= K—X—[OEO] ; [XES]= Ki—[OEO] = ——S—X—[OEO];

0s osKsx KoxKxs

K
y= Kex =—X..  ([XE0]20; [0ES]#0, y — is the interaction coefficient).
KOX KOS
V =k, [0ES]+ k,[XES]; e, =[0E0]+[0ES]+[XE0]+ [XES]
Proceeding from this, in accordance with A, B, C, D schemes (Fig. 2.8) we’ll obtain velocity equation:

[l+ I)(( J KS(H%J [1+EX—] K
Cx/ X<t; (B)U=a+bt= XL 4 s -t

k0(1+ KXJ ko(1+ AX} k0(1+j’—x) k0(1+’1_x]
YK YK x K« Ky

K
© U=a+bt=—1—+ 1+&]&t; D) U=a+bt=L+ 1+1 =t (2.10)
ky X Jky k, Ky )k,

(A) U=a+bt=
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where U=¢,/V, t=1/S, a= l/ k>0 and b= 1/ k™ > 0, while the abscissa is intersected in ty=-
a/b point. In the case if X=0 then 2.10 equations -will be usually transformed into the Michaelis-Menten
equations — e,/V=1/ K, (1+K¢/S), and if X—00 we’ll have e/V=1/Kx (1+yKy/S).

Let us suppose that to two diverse concentrations (X1 and X2) corresponds two equations
U=al+blt and U=a2+b2t the co-ordinates of their intersection points are U*and t*. Let us determine

the dependence of U* and t* signs on numerical meanings of A _and y coefficients.

t'=—22"21 and U =b,b2ti:—tﬂ, where t,, =-21 4a to, =22
2" Y 2" % 1 2
As a>0 and b>0, we can easily guess that
. () sign(da/dX) . _(ve) sign(dt,/dX)
t')=———F———+< and U )= 2.11
sgn(t) sign(db/ax) e (v) sign(db/dX) @11
e, B )@ K)o o)
AX AX X
ko'YKx(l'l' Kx) ko'YKx(l'i- KX) 'YKXKS(I'I'R;)
From this it is derived that
. .\_ sign(A-1) . .\_ sign(y—1)
sign{t’ )J=———= and sign\U" )=—"——F—=. (2.12).
() sign(y -2 () sign(y —1)

The location of intersection point in the co-ordinate plane is determined by their sign and as is
seen from the above analysis, as well as by numerical value of A and y coefficients. Since A_and y
numerical value is the basis of modifiers’ classification, the location of the intersection point may also
become the principle of modifiers’ classification, i.e. according to the location of intersection point a
modifier’s type can be ascertained. This is testified by the examples given Table 2.1.

Modifiers’ classification, brought up above, exhaustively describes every possible mechanism
of their action on enzyme rate for a single-sited systems. This principle of classification is in full
harmony with the recommendations of the International Biochemical Society Nomenclature Committee
(NC-IUB).

For single-sited enzyme systems, the intersection point may be located in the I, II and III
quadrants of the co-ordinate system, its location in the negative section of ordinate and in the IV
quadrants is excluded (a>0, b>0 i.e. t,<0). In order to determine the position of the intersection point
suffice it to ascertain experimentally two dependencies {U=a(X;)+b(X;)t and U=a(X;)+b(X;)t}. While
for a full deciphering of the molecular mechanism it is additionally required to establish V=f(X)

function form, since one kind of activator & inhibitors rectilinear (L) and non-rectilinear action do not

affect the position of intersection point.



Table 2.1

Modifiers’ classification according to the intersection point[L] is a rectilinear modifier, Ul is a
competetive modifier, Ul is an uncompetitive inhibitor, NCI is competetive modifier, Ul is an

uncompetitive inhibitor, NCI is noncompetetive inhibitor. AA is an essential activator (K,=0) (see Fig.

2,8, schemes A, B, C, D)

sign

N Graph g Schemes and conditions Modifier’s type
ot Activator Inhibitor
U (A) 1>y=A
1 Use | @ 1<Y=2 g XRo=0, | Catalytic activator
t > ky=0; (UD), [L]. |  and inhibitor
t dt,/dX>0 dt,/dX <0
U : (A s> B)
2 U>0 Specific activator
t | =0 (C) [OES)=0, (D) kx=0, and inhibitor
ko=0; (AA), [L]. (€N, [L]
dt,/dX <0 dt,/dX>0
U (A) y<1<A A) y>1>A
3 U'>0 Y<1, ko=0; Y>1>A=0, | preferentially
n t' <0 (A4), [L]. [L]. specific .
dt,/dX <0 dt, /dX > 0 g
o=
=
U (A) 1=y<A (A) 1=y>A . e
=0 | 1=7 ke=0; 1=y>a=0, |Affinity s
4 £ <0 [ (AA), [L] (NCD, [L] | constant g
t : - (to substrate) | &
dt,/dX =0 dt,/dX =0 §
U A) 1<y<Ai A) 1>y>2A E
5 U'<0 1<y, ke=0; 1> YE A=0, Preferentially =
|t <0 (A4), [L] [L]. catalytic
dt,/dX >0 dt,/dX <0
U .
U'>0 (A) y<A<l1 (A) y>A>1 Simultancously
6 >0 activator and
t dt,/dX <0 dt,/dX> 0 inhibitor
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Chapter 3. MULTI-SITED ENZYME SYSTEMS

3.1. Basic equation of kinetics

As mentioned above, enzyme reaction rate is a multi-variable function. By convention,
they may fall into two groups: 1) reaction medium parameters (temperature, pH, ionic force,
solution content (composition), etc); and 2) ligands which represent the enzyme substrate and
modifiers. The basic principle of kinetic analysis is to bring the enzyme reaction rate to one-variable
function. Proceeding from our goals let the reaction medium (first group parameters) be optimal and
constant, while ligand concentration, except one (x) be also constant. In this case we obtain one-
variable function and it will be possible to formulate the principal theorem of kinetics:

Theorem. Given constant reaction medium and variability of only one ligand
concentration, then the velocity equations of stable enzyme (polymerization, dissociation and

association of the enzyme being ruled out), under both rapid equilibrium and steady-state, will have

form of ratio of polynomials:

x" ZP: o;x!
Yo pimep=s @31
k > Bix!

i=0
where, ¢, is the enzyme overall concentration, x is concentration of a variable ligand; n, m, p and s
are power parameters. n, m and p parameters may assume zero quantity, but not simultaneously.
The maximal degree of a nominator is not to exceed that of a denominator n+p<s, i.e. m>o0. oy and
B are constant coefficients and are the sums of products of different constants of velocity, therefore
0120 and [,=0.

Despite resemblance of analytical form of velocity equation (3.1), derived under rapid
equilibrium and steady-state conditions, there is a principal difference between them, what is
expressed in the difference of physical essence between equation coefficients and degree
parameters.

Under rapid equilibrium conditions, rate equation was derived and analyzed by Wong. Let
us define physical meaning of degree parameters obtained in these conditions. Let's denote by & the
sum of the number of sites to be bound by ligand, and the number of ligand occupied sites by i, then

for € site of enzyme systems, each form can be expressed through the free enzyme concentration,

ligand concentration and dissociation constant;
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i

[Eo] (2)

[Ex ]—[ ][Ex(l 1)]— .

K; H K,
where, [EO] is the concentratlon of a free enzyme, [x] is a variable ligand concentration and K; and
K; are the dissociation constants.

Suppose, a catalyzing ability is possessed by the form of an enzyme in which n site is
occupied, further on when h quantity of sites is occupied the reaction course is not interrupted (only
increases or decreases the enzyme reaction rate), while at the occupation of the remaining m site the
process gets entirely inhibited. As the reaction rate is a circular combination of the forms having
catalyzing ability, in the nominator of velocity equation there will be product, forming able

...(n+h) forms, multiplied by relevant rate constants (k), while in the denominator are all

parameters, including m ligand-bound form and the velocity equation will look like:

xn xﬂ"rh n+h .

2 44k —2 0 yn x'
v _k, [E:[( ]J]r +k[,,+h[bixn+h] T R K _l Ea'x (.3)
€, EQJ+---+|Ex X B.x’

1+Z KK, ;B'x

Thus, both the nominator and denominator in the rate equation are polynomials, with
respective maximal ([n+h] & &) and minimal power (n & 0), o; and P; of rate constants and
combinations of ligand concentration members. If we draw a parallel with basic velocity equations
(3.1), it will be clear that p=h and s=e. From this, clarification of the physical essence of qualitative
parameter is easy. If ligand is a modifier, then n is the number (N type sites ligand formation of
which is necessary for the enzyme activity to be manifested) of sites necessary for activators; p is
the number of sites for the partial effect modifiers (activator or inhibitor) (H type sites which does
not require ligand formation for revealing the enzyme activity). m is the number of sites for true
inhibitors (M type — during ligand formation of which the enzyme possesses no catalytic activity),
and s is the sum of site number. If ligand is a substrate, then, as a rule, n=1, although it is possible
that n>1. In this case, theoretically n is the sum of site number for substrate and essential activators.

For multi-sited enzyme systems, under steady-state conditions, to solve the rate equation
is 2 more complex task than under rapid equilibrium conditions. For this it is required to determine
velocity of all intermediate forms of enzyme concentration changes, to make it equal to zero and to
work the obtained sets of equations. This approach is rather laborious and therefore, a graphical
method proposed by King-Altman is, as a rule, used. In the case one ligand being in the stationary
equilibrium and the other in the rapid one the method of Cha is applied, this greatly facilitates

solving of the equation.
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According to King-Altman method, to each enzyme form corresponds a graph node and
its relevant determinant (Dj), index i designates number of liganded sites, while j is the numerical

number of similar forms. If the total number of sites is ¢, then the number of forms with i amount of

ligand formed sites would be v, =¢l/i!(e—i)! and total number of forms v, =Zvi =2°. By the
i=0

King-Altman method, the node determinant in general looks like:
Dl = ((_}i(o)xi 4ot Gi(‘)xi‘“' Foo et G-i(qi)xi+qi ),
while the sum of determinant forms of sites with uniform i amount of ligands will have the

following pattern:

3'D,=3'D, =[ZG§;’)£ Feet Y GPXT 4 +ZG(‘” ‘l} (3.4)
=1 =1 =1 o

where (ij"xi“) represent the trees oriented to i node, which in tum, is the product of

concentrations of all ligands implicated in the velocity constants and transitions. In the most general
case (; may vary for different i and j, but if there exists all transitions in enzyme forms, then for all
D;; the maximal degree q; is constant. It is remarkable that during D;—Dj., transition the minimal
and maximal degree of a determinant increases by one, given gi=constant.

Thus, if the enzyme system has z site and g;=const, then we’ll have the following sequence

0° determinants:

i=0 D, =¥'D,, = [zem...ﬁ:cw X* 4o +ze<q>xq]
j=1

j=t

i=1 D, = 2Du_x[ZG(°)+ +ZG(”x‘+ +ZG{§“xq}
= =l j=1 j=1

V(n+h)

vi

- h 0

i=n+h n+h—ZD(n+h)J X2 D Gy ZG(n+h)J
j=1

i=¢ D, Z L=X [ZG(°)+ +ZG(T)XT+---+VZEG£?)X‘1:|

J=1
By summing we’ll get a polynomial whose coefficients are

vi ) )
BFZ ZG%’ : ZDi=Bo +B1x+---+(3ix'+---+ﬁsxs, where s=g+q (3.5)
T | j=1 .
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Suppose the enzyme system for essential activators possesses n site (N type) and
additionally h site whose liganding results in an increase or decrease (H type) of the reaction rate.
The relevant nodes of this type ligand sites show catalytic activity and the product of their

determinants by the catalytic constant will be:

i=n (kD)n =kpx" (GS,O)+---+fo)x‘+...+Ggq)xq)

vi | i Vi vi
i=1 j=1 j=1 =

. h 0
i=n+h (kD) .h =k(memx™ (ng)ux) et GE;Lh)xt +'"+G§g)+h)xq)
By summing we also get a polynomial, where p=h+q

Z(kD)i=x“(a0 +---+aixi+---+apxp) (36)
i

Under steady-state the enzyme reaction rate is the ratio of the sum of product of
catalyseable node determinant and respective catalytic constants to the sum of all node
determinants:

n+h

v Z(kD)l x“iZ:;OLixi

=n€ :> S
o ZDi ZBixi
i=0 i=0

From the analysis of the above given sequence it is evident that the physical essence of n

; m=s—-n-p 3.7

parameter is the same as in rapid equilibrium, but alters the physical meaning of p parameter, which
is the q sum of partial effect modifiers (h) and of a new power parameter. Accordingly s=e+q. q —
that reflects complexity of the structure of the enzyme system molecular mechanism, let’s refer to it
as a complexity parameter. At a strict sequence of ligand binding (when first N type sites are
liganded, then H type and finally M type) both in stationary and rapid equilibrium g=0. If in a
functional enzyme unit ligand binding reduces to zero the site affinity to ligand, q would not have
one meaning for all D;j determinants. Accordingly, D; will have various maximal degrees. In the
basic velocity equation (nt+p) is a maximal degree of KynDn+n €xpression, while s is the maximal
degree of D, determinant, although they may have a diverse meaning of ¢;. Respectively, we’ll have
qm+n) and ge. In the case of rapid equilibrium we had e-n-h=s-n-p=m. Let’s determine s-(n+p) in
stationary equilibrium:

§ = E+Qe s2p; m#0; qe>qun;

= = s—(otp) =& - (nth) +(q: ~ Gust) =M+ Gm
p=htqene) Gm = (Qe— Qu+n)
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i.e. nominally nothing changes, although the degree parameters s, p, m and h gain a new physical
meaning (n physical meaning remains unaltered) at increased number of sites. But, as already
mentioned, the analytical form of the enzyme reaction rate equation is complicated (3.1). This
occurs particularly in stationary equilibrium. This is verified by the interaction between the site

number and the degree parameters, represented in Table 3.1

Table 3.1
Maximal degree of meaning, s
Number of sites Number of - g=const
enzyme forms : P Stationary
zy Rapid equilibrium .

equilibrium

1 2 1 1 0

2 4 2 3 1

3 3 7 4

4 16 4 15 12

7 128 7 127 120

The sites (M type) forming dead-end branching falls into two groups: to the first group (M,
type, amount m;) belong the sites having a capacity of binding a ligand in the case of ligand
formation in other sites. This means that they are able to form a dead-end branching in the case of
ligand formation in N and H type of all (nt+h) sites and M, type (m;-1) site. To the second group
(type M., amount m;) belong the sites which are capable of ligand binding only when the definite r;
sites are filled with a ligand, while at ligand binding of (rj+1) site, because of a negative co-
operativity, no ligand filling occurs (K4q—>). If the number of such sites (myj+rj) is more than
n+h+m,, then they can cause an increase in the maximal degree of the node determinant (D) only
by Am; value (my=my;=T;-n-h-m,). An imitation is created that m; sites are attributed to M; type of
sites. The rest (my-m;) sites do not affect maximally the degree parameter (s) and their
manifestation on the basis of equation 3.1 is impossible.

m = [mj+2(m;)] = s-n-p
m designates the number of sites for full inhibition and the rest — non-exhibited sites (m,). If a
ligand is a substrate, then such kind of (non-exhibited) sites are referred to as non-productive ones.
m=s-(n+p) is a maximal number of ligand occupied passive sites (the sites forming dead-
end ramifications capable of enzyme inactivation. Such a definition offered by Z. Kometiani differs
from that of Bardsley’s who under s-(n+p) expression meant the number of all the sites ligand
binding to which results in a dead-end branching. Thus, the sites forming dead-end branching are to

be divided into the sites that can be manifested (m) and those which cannot be revealed (m,).



31

Similar situation may occur in the rapid equilibrium conditions as well. Therefore, the physical
essence of degree parameters requires correction.
Conclusion. Thus, the qualitative parameters of the main velocity equation (3.1) have the
following physical meaning under rapid and stationary equilibrium:
n is the number of sites for essential activators;
h is the number of sites for partial effect activators;
m=[m;+Z(my;) is the number of sites for the full inhibitors;
my is the number of sites for inhibitors, whose filling with the ligand results in dead-end
branching, but has no effect on the maximal degree of the denominator;
q represents the degree parameter reflecting the complexity of the enzyme molecular
mechanism.

In the case of rapid equilibrium (q=0), p=h+qg+n, s=€+q¢; (if gi=const qe+n=qx)

3.2. o function

The clarification of the molecular mechanism of multi-sited enzyme systems is primarily
associated with the determination of digital meaning of qualitative parameters in the main velocity
equation (3.1), this being rather a complex task. As regards the qualitative indices, they are
associated with the reaction order (see 1.5). Let us consider a simple reaction

E+nX—>EX, = V=dEX,]/dt=k[E]X" = InV=Ink+In[E]+nlnX
where, V is the enzyme reaction rate, X is a variable ligand concentration, while the rectilinear
InV={(InX) function slope is a reaction order, n=dInC/dInX. For the multi-sited enzyme systems,
as a rule, the logarithmic function is of far more complex pattern and it is impossible to calculate its
genuine order. Therefore, a kinetic parameter apparent order of the reaction @=dInV/dInX has been
introduced.

In complex reactions, as distinct from the elementary ones, the apparent order may not be an
integer, or a negative value may be obtained. Proceeding from this, the direct physical essence of @
function seems to be abolished. Let us reflect the first derivative of V={(x) function through w
function.

, dVv VdinhV V
Vx = — =—®
dx xdhhx x

Vi
= 0=
V/x
V/x is nominally the first order velocity (V=Kx) constant (slope); while V, represents the
slope of tangent of the genuine velocity V={(x) function in Vx point. ® is the ratio of these two

slopes, i.e. represents a measure of the difference of genuine velocity and the first order velocity.
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There may be another interpretation too: @ function is specific acceleration of V=f(x) function,

expressed in the units of the first-order velocity gradient. These definitions clearly display the

physical essence of w function.

Vix
\Y Fig. 3.1. Physical essence of ®

V'« — a slope of a tangent of V=f(x) function in

x point (V,x).
V/x — a slope of the first-order velocity (V=kx)

In addition to all this, ® function has a paramount importance for the thorough theoretical
kinetic analysis of the multi-sited enzyme systems. It is, therefore, reasonable to study in more
details the properties of ® function.

l. ® and ®’ are continuous functions and they, as t—variable (t=Int) functions have the following

analytical pattern:

s+p-1 2(s+p)
noof, + Z Y ek —monPBSe_(SJ“p)T Zqu_qT
©= k=l . do_ _g=0 (3.10)
s+p-1 _s+p) ’ d‘t s+p 2 .
agBo + D By +a B P 3 Bye ™
k=1
r k <
0<ksp = W= (n-k+2ippy;; By=> apfy;
i=0 i=0
P P
p<k<s = \Pk=Z(n k+2i)iBy i Bk=zaiﬁk—i
i=0 i=0
4 P
where < s<k<(stp) = W= D) (n-k+2ipiBy ;3 Br= > oy (3.11)
i=k-s i=k-s

q
0<q< (stp) => W= Z(q—Zk)‘I’kBq_k
k=0

S+p
(stP)<q< 2s+p) = Wo= > (q-2k)¥ B,y
k=g-s-p

(.
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max o = (n+p)
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\ / min ® = —(m+p)

Fig.3.2 o ={(t). (see the text)

oo Ve _dinv _ din(l/V) _tU;

2. - - e 3 U=1V, t=1/x). 3.8
V  dinx din(l/x) U U=y /x) G.8)

d’lnv  d’ImU  d*mU do
=— = ; o' =— ; (1=Int) 3.9)

dlnx? dint? dinx? dt

In the case of reversed variables  does not alter, while its derivative changes the sign.
3. o function is restricted, -(m+p)< @<(n+p)

4. ® function has horizontal asymptotes: limo=n, lime'=10; lime®'=-m, lime =+0
T—>®o T—>0 T—>—0 T—>—00

5. limw'— sign is determined by the sign of D_;=(oBi1-1ps) expression , if D¢;=0, then sign of

T—>00

Dox=(cgf—0Bg) and etc. lim'—sign is determined by the sign of expression Hoy=(0tpPs.c-ap-1Bs),
T—>—

if Hp =0, then Hoy=(otpPs.2-0tp2Bs) expression sign and etc.
6. The number of turning points of V={(x) and U={(t) functions is dependent on p degree
parameter, the sign domain of  function and the meaning of n & m degree parameters. The number

of turning points is defined by the root number v, in ®=0 equation.

n>1, m=>0 n=1, m>0 n=0, m>0
ign li # sign lim®
Sign mo #Sien MO | 1<p<(2p-1) 0<p<(2p-2) —_
sign lime =sign lim®
'gn lim® = sign e -—- 1<p<@p-1) | 0<p<(2p-2)

7. During analysis of kinetic curves the tangents passing through the origin of coordinates is used.

Their number, for V={(x) and U={(t) functions, is determined by the root number p in w=1
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equation, which also depends on p degree parameter, the signs in @ function domain and on the

meaning of n & m degree parameters.

n#0, mz0 | nz0, m=0 l n=0, m=0 n=m=0
sign 1111_1)12) # sign 1111)‘1_2 1<v<(2p-1) 1<v<(2p-3)
sign lime =sign limow _ 0<v<(2p-2)

T—>w T—>—0

8. InU={(Int), InU=f(Inx) o> InV={(Inx) functions have sloped asymptotes
(Inx— —0) = InV =1In(ag/Bg)+nlnx (Inx—> +0) = InV =Infa, /B, )-ninx

(Int>—0) = WU=In(,/a,)-mint  (nt—>+w) = IU=In,/o,)+nlnt

(lnx— —0) = 1nU=1n(B0/on0)—nlnx (Inx— +w) = an:ln(ﬁs/aP)+mlnx

{k A
InUj InU]| |

Do>0 Hp1>0

Int
Fig. 3.3 InU={(Int) s InU={(Inx) function asymptotes and the shape of curves in the
limit (—w) Dg=aoP;—oifo; Hor=0p,Bs1 — op1fs.

9. Through ® and ®’ it is possible to reflect the derivative of some importani fur ctions (see Table

3.2; The following designations are used: U=1/V, t=1/x, T=Int )

Table 3.2
F={(G) Fg F-G-Fg oG
dinU do _
[nU=f{(Int) oo =0 | Ut | =0
V={(x) % %(l—co) —[ o, +o(o-1)]
yr,t)=YU=£(t) | Vrtﬁw Vrti(r—m) Jt_ [rco +o(o—r)]
Y(f,x)=§/ﬁ=f(x) —Wco W(rﬂo) J_ = [ +w(w+r1)]
: x T
z(r,t) =—=1(t) U(:?H— 3) t—(r+1— ®) tHz [0 +(@—1)o-r-1)]
z(r,X)=E;=f(X) U((::r) Er(r+l+(o) U2[ +{o+r)o+r+1)]
X t X x™"
mU=f@) |2 hU-o 0~
't t
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The methods for transformation of variables have been commonly employed in kinetic
studies. Their purpose was a linearization of the initial hyperbolic function V=(f(x) via
transformation of variables and by means of them to determine the basic kinetic parameters Vpmax
and Kq. Analysis of the main equation (3.1) poses certain difficulties. On the one hand, the equation
coefficients are complex combination of kinetic constants and because of this, the information
yielded by analysis of a slope and intersection of coordinate axis is rather restricted. And on the
other hand, the equation (3.1) contains the terms being in a high degree of concentration and
measurement of degree parameters by experimental curves is a complex task. Solution of this
problem requires a detailed analysis of geometric forms of the functions resulted from the
transformation of variables. From this viewpoint, it is preferential to reflect the geometric shape
features via any one function and to use @ function for this reason (Table 3.2).

The presented transition formula enables to follow the intertransformation of the geometric
shape determinant parameters of the given functions (the tuming point, inflexion point, the tangent
passing in the origin of co-ordinates.

Thus, via o function it is possible to ascertain the geometric shape determinant parameters

for other functions and to make a relative analysis of their shapes.

3.3. The principles of kinetic curves’ analysis for the multi-sited enzyme system

Deciphering of the molecular mechanism for single-sited enzyme systems is associated
with the measurement of V,.,x and K, , graphical plotting of which is possible with the traditional
methods used for variables’ transformation, once they provide linearization of the initial hyperbolic
dependencies. In the case of multi-sited enzyme systems it is obtained a new kinetic parameter,
degree index of which is associated with the type and number of ligand binding sites. Therefore,
while making analysis of the main velocity equation, that is a fractional-rational function, definite
difficulties are encountered. On the one hand, the equation coefficients are complex combinations
of kinetic constants, that’s why the information furnished by analysis of slope and intersection of
the co-ordinate axis is very limited. So, for the multi-sited enzyme systems clarification of kinetic
parameters for each individual site is difficult and it became necessary to find such parameters that
would change V. and K- On the other hand, the equation contains a high degree of concentration
members and determination of degree parameters of experimental curves is an important task. A
single way for solving this problem is the analysis of geometrical shape of the curve. Any kind,
including fractional-rational analysis of function implies, above all, determination of arrangement

and number of extremum and inflexion points (Fig. 3.4).
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Tangents passing at 0.0 Fig.3.4. Graphs of V={(x)
v function

Turning point

A —(n=0), B - (m=0).
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A stepwise increase of velocity
determines existence of more
than one tangent passing at 0.0
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The points of extremum is determined by V'=0equation and the inflexion point by
V" =0 equation. The point of horizontal inflexion, existence of which requires fulfillment of two
conditions, V'=0 and V"=0, is important in the kinetic curve studies. Apart from the equality to
zero of the first and second derivatives of the function, determination of their signs is of importance.
In the first case it provides information about an increase or decrease of the function, while in the
otl'er case, about its convexity and concavity. While classifying kinetic curves by their shape it is
important to determine the curve point on which passes the tangent in the origin o f co-ordinate. As
regards the infinitely high and infinitely low concentrations of the argument, analysis of the
function in this site requires assessment of the above parameters with constrained meanings of the
argument (x—0 and x—o0). It is also important to ascertain the arrangement of a function graph
against asymptote. The parameters discussed above enable analysis of the curves of geometrical
shape.

Bardsley and co-workers were the first make an attempt to decipher the molecular
mechanism of the multi-sited enzyme systems through the analysis of geometrical shape of a curve.
They have studied a fractional-rational function 3.1 and analyzed the possible shapes of kinetic
curves. Study of local graphical features of a curve makes it possible to discuss the degree
parameters of the velocity equation. Thus, for example, if at infinitely great value of the argument
V={(x) the graph asymptotically approaches zero, this means that the maximal degree (power) of a
nominator is more than that of a denominator S>n+p; if at infinitely great value of an argument
V={(x) graph tends to a horizontal asymptote, then on S=n+p, V={(x) graph availability of a
sigmoid inflexion point testifies to a minimum 2:2 degree and justification of azB.>a;f; inequality.
Minimum 2:2 degree is plausible also in the case, if in 1/V={(1/x) co-ordinate system the graph is

not rectilinear or on V={(x) graph of a function there is a single maximum point. On V={(x) curve



37

existence of a minimum point implies the least 3:3 degree. If on V={(x) graph there are multiple
inflexion points and on 1/V={(1/x) there is one inflexion point, this still testifies to a minimum 2:3
degree, while V=f(x) graph with a horizontal asymptote and a horizontal plateau implies a
minimum 3:3 degree. Similar rules are numerous, but it should be noted that for an accurate
estimation of the degree of velocity equation the use of other co-ordinate systems alongside with
V={(x) and 1/V={(x) graphs is beneficial. The curves having a definite geometrical feature are
characteristic of each fractional-rational function. In spite of the fact that the high-degree equations
yield all curves specific for low degrees, there are still certain features which are characteristic of
only high degrees, therefore, to discover such specific features the use of different co-ordinate
system is required. The transition formula allows for the transfer of one co-ordinate system to
another (Table 3.2).

The given formula enables to follow the transformation of the tuming and inflexion points
while shifting from one co-ordinate system to another. It is clear that the turning points available on
the initial function V={(x) graph will be maintained on all the rest of function graphs. It is
remarkable that the first inflexion point (n>1) on V={(x) graph is not reflected on 1/V={(1/x)
graph. It should be noted that the shape of multi-sited enzyme kinetic curve, except for the degree
parameters, is affected by o and P coefficients. The degree parameters of a fractional-rational
function determine the upper limit of curve complexity, while the coefficients, the lower limit.

It must be borne in mind that a complex analysis of complex geometrical shape curves for
the multi-sited enzyme systems is impossible because of a sparse experimental material, therefore,
for the sake of facility Bardsley has separated three sites to which corresponded the sites with
extremely low, medium and extremely high ligand concentrations, the site where the curve shape is
affected, apart from the degree parameters (n, m, p), by o and B coefficients. It muist be noted that
with extremely low ligand concentrations which involves the section to the first turmng point of
V={(x) function, the curve shape is influenced chiefly by n parameter.

At extremely high concentrations, which involves the section from the last point of turning
of V={(x) function to the infinitely high quantity of argument, the curve shape i.snaffectcc‘l by m
parameter, while the middle concentration range is located between the given sites and here curve
shape is influenced by p parameter. Bardsley considered a particular case, when argument of thé
function represents substrate (n=1), while m parameter equals to zero, therefore he did not have to
determine such parameters of rate equation as the least power index (n) of -a nominator 'and
difference between the maximal power of denominator and nominator (m). This problem is topicél,
when a modifier is considered as argument of a function. Thus, in the present-casé dcte;rninatién of

degree parameters of the (n=1, m=0) velocity equation is restricted by p parameter. Anaiysis of the
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geometrical shape of the curve has shown that in the site of medium concentrations of a ligand
estimation of p parameter is possible on the basis of analysis of extremum and inflexion points.

It must be noted that o and B coefficients of fractional-rational function as representing a
combination of velocity constants depend on a concrcte mechanism of reaction. This property
makes it possible to distinguish the individual mechanisms, or in other words, it is possible to relate
probability with the definite curve shape and calculate its meaning. Bardsley has proposed a method
for the calculation of the given probabilities and a probability for a definite curve shape appeared to
correspond to each molecular mechanism. Different shape probabilities were determined for 2:2 and
3:3 fractional-rational functions, as well as for concrete mechanisms generating the cquation in the
given degree. Deciphering of a molecular mechanism for enzyme systems is possible using the
approximation method of rectilinear regression for kinetic curves.

Thus, it should be said that both in calculation of geometrical shape probabilities of kinetic
curves and in the case of approximation via curved linear regression of the given curves, fitting
procedure was used, on the basis of which different molecular mechanisms were distinguished and
the highest powers of a nominator and denominator of the fractional-rational function were
determined. From the viewpoint of deciphering the molecular mechanism, more universal than this
approach is to establish at the first stage n, m and p parameters and on the basis of it determine a
«minimal model» that actually represents regulation principle for the molecular mechanism. Only
afterwards it is reasonable to use the rectilinear regression conventional approaches for the
calculation of numerical quantities of the coefficients, that would enable extention of the scheme
and final deciphering of the molecular mechanism. From this viewpoint, none of the traditional
methods for variable transformation in the extreme ligand concentration site allows for n and m to
be determined. Therefore, for the purpose of solving the tasks related to the molecular mechanism'’s
deciphering for the multi-sited enzyme systems, it was necessary to introduce a new co-ordinate
system. Natu.rﬁlly, the use of geometric functions could not solve the question of n and m
determinations. Of logarithmic functions, study of ® function made it evident that n and m degree
parameters could be determined through it.

"From the viewpoint of n and m measurement, analysis of degree functions is of interest. In
particular, to study the function resulting from the universed power transformation (when a function
and argument simultaneously undergo all the possible power alterations: root taking, raising to a
power, multiplication and division. Let us designate the transformed new function and argument
respectively by F and G, F=VPx* and G=V*x", where p, A, p and v are real numbers. The traditional
graphs, except the logarithmic one, are a particular case of the given transformation. The geometric

shape determining main parameters allow for the analysis of the given F/G function. It appeared
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that in order to determine them it is convenient to reflect them by means of a @ function, or €2

value, which is formally analogy to ®. Thus, for example:

_dInF _po+A o= d?InF B o'(pv~pi)

_ : _ _ A (3.12)
dinG  po+v dinG?  (pw+v)

The geometric shape of F={(G) function is determined by its first (F,) and second (F;,)

derivatives and by way of the ordinate section cut by a tangent, when reflected by means of

(F-GF)), it will look like:

dF _F _VPHpo+A]

dG G xv—}‘(p(o+v)

2 (p—1) - ' -
CF_F lorrofa-1)-Y {ov-mo +[((§vaj:) 1) (uw; vlpotMpotvl} ;g
dG* G x (no+v)

F-GF, =F(1- Q)= VPx? (bo+v)-(pw+1)
HO+ V

The given formulae make it possible to study a curve of any shape obtained as a result of power
transformation.

Analysis of curve shape in the medium site of ligand concentrations implies to establish the
extremum and inflexion points and to explore the function’s first and second derivatives’ sign
transformation as dependent on the degree parameters. In the ligand medial concentrations site it is
impossible to determine the numerical meaning of n and m degree parameters. This site enables to
delineate the regularities that exist between the extremum, inflexion point and the tangents passing
in the origin of coordinates.

The extremum points are defined by the equation F’=0. If A=0, then the extremum points of
all the rest degree transformation are maintained and for this one requires to meet ®=0 equality.
Thus, if the initial functions extremum lies in X; point, then F={(G) function as well will have it in
the respective points of argument, for any values of p, p and v. Maximal number of positive roots of
=0 equation is (2p-1). When A#£0, the number of extremum points is determined by the roots of
po+A=0 equation, given pw+v#0. In this case the points of extremum do not persist and their
maximal number again equals to (2p-1). The inflexion points are determined by the roots of F>’=0
equation. |

In a general case, during power transformation the inflexion points are subject to

transformation, though there are exceptions in the case if F={(G) function unde'rg'de'svthe' fdllowing

power transformations:
F=f(G) = 1/F={(1/G) (p=v=1, A=p=0)
F={(G) = F={F/G) (p=p=I1,2A=0,v=1) (3.14)

F={(G) = G/F={(G) (A=v=I, p=0, p=1)
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then, the second derivatives of these functions will respectively look like:

d*(/F) _G*
d(1/G)? F
_@F __GLo+ofe-1)
DEF/G? F  (@-1F
d*G/F)_ 1

dG)?  FG

Q' +a(Q-1)];

(3.15)

Fa+a(Q-1)).

In the case of the very function, the inflexion points will be maintained as a result of
transformation and will be determined by [Q(Q2-1)- Q']=0 equation.

Both the first and second derivatives in F=f(G) function are discontinuous functions when
p=0. Function break occurs only in the case when p#0 and the respective points are determined by
(ho+v)=0 equation. When A=0, at all other power transformations the horizontal inflexion point
maintains and represents the roots of ®=0 ®’=0 equation system.

As mentioned earlier, for the analysis of geometric shape of curves important is the point at
which the tangent passes in the origin of coordinates. This point is defined by &!=1 equation.

In the medium site of ligand concentrations, relying on analysis of the curve geometric
shape, the certain regularities were found to exist between the points of extremum, inflexion and
those at which lies the tangent passing in the origin of coordinates. This is expressed in the
following rules:

‘1) Between the two adjacent extremum and horizontal inflexion points there surely is at least
one inflexion point. Their number is always odd.

2) Between two points at which lies the tangent passing in the coordinates origin there is
sure to be at least one inflexion point. Their number is always odd.

3) Between two inflexion points there may not be the points of extremum, of horizontal
inflexion and the points at which lies the tangent passing in the coordinate origin.

Hence, analysis of the kinetic curve geometric shape implies calculation and determination
of turning points, inflexion points, the signs of the first and second derivatives, the tangents passing
in the origin of coordinates and asymptotes.

Particularly important is the analysis of the curve geometric shape in the ranges of extremely

small and large values of argument, as within these ranges limo=n and limew'=-m.
o T® T->—0

The géd_metric shape of a curve is chiefly determined by degree parameters (n, m, p) and the
coefficients (ai, Bi), but as a result of power transformation of variables also alters the geometric
shape of the curve and respectively the degree parameters. There is an impression that the degree

parameters (n, m, p) can be defined on the basis of analysis of the curve geometric shape. These
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questions have been studied in details. It emerged that there is no sense in the transformation of
variables by means of trigonometric and exponential functions. And of various versions of variable

transformations (F=VPx* and G=V*x") only four can be used:

1) p=0, A=0, v=-1 and p=—l
T

2) p=0, A=0, v=+1 and p=—%;
3) p=0, p=1, p=0 and A=—Tr;
4) p=0, p=1, p=0 and A=tr;
where r is a variable parameter. Thus, if we add the logarithmic functions, there would emerge six

of them by means of which there is a theoretical possibility for determining the degree parameter
(n&m):

P s
1) lnV=f(lnx), InV=n8+In) o;e®—In) B;e’®; where 8=Inx (3.16)
i=0 i=0
s . P .
2) InU=f(nt), WU=nt+In) Bie™" —In) a;e™™; where t=Inx (3.17)
i=0 i=0
s -
tn—rZﬂit_l
3) z(r,t)=UK", z(r,t)=—pi=9-——; (3.18)
Zait_i
i=0
S
xm-rZBs_it—x
4) z(rx)=U/X", z(r,x)= - i=0 : (3.19)
Zap_it_i
i=0
T ql/r
thBit—i
5) yEH=[U®T", y(r,t)= ;=°— ; (3.20)
Zait_i
L i=0 i

6) yrx)=[UX)]", y(r,x)= (3.21)
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Chapter 4. EXPERIMENTAL DETERMINATION OF
n AND m POWER PARAMETERS

4.1. n parameter determining transformations

Based on the curve shape analysis and by means of transformation of variables there are
three theoretical means of determination of n parameter. These are: InU=f(Int), z(r,t)=U/t'={(t) and
y(r,t)=§/ﬁ=f(t) transformations. In the limit (t—o0) the geometric shape of the three functions is

dependent on numerical value of n that constitutes the basis for its determination. Before starting a
detailed consideration of this principle, for simplicity, let us introduce the following designations:
Djj=(aif;-a;B:) and Hy=~(0tpiBs-0pifs-i)-

1. In the case of InU={(t) function to set up n’s numerical value is possible by

determining the slope of an asymptote, since it is known that:

S . p .
InU={(Int), mnU=nt+In ) B,e™ —In) a,e™"; where t=Inx, U=1/V and t=1/x.
i=0 i=0

2
tim 38V _ | lim[U-tU']=In(By/aty) and lim < lan—)iO,
o dt 13© e
InU =In(By/ag)+nt, (asymptote) 4.1
InU Fig. 4.1. InU={(<) function, (t=Int)

Broken lines represent regression lines,
drawn on two different groups of points, whose
slopes vary markedly from each other. Therefore,
correct choice of operating interval is particularly
important.

slope=2.99

: slope=1.58

Int

Hence, if the working range has been correctly selected and we draw a regression line on
these points (Fig. 4.1), then through the calculation of circle slope n-parameter can be determined.
But the problem lies in finding whether the range is correct and accordingly the results obtained are
valid.

2. In the case of z=f(r,t) function, at extremely high values of argument, the limiting

values of the first and second derivatives of a function and of the ordinate axis intersection by

tangent will assume the following pattern:
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limz(r, ) = 11} o | %

e (SU | “

R t“")[(n—r)+ e ::;: Bt im 1+ J K
r(n-r)(n ~—r-1)+ 2(n_r—l)(£)lg0+ (o-1)B, )tl_l;rg t™ +

‘1Ln;z”=£—°0—(tl_iﬁt““‘2) +{[D10 +(0-1)B,IDyo +(n-r-1)B; ]+ }£+ e
| [+2(n-r~1){2Dy +(n~1)B2 )JxoBo ~200PoD20o f (cteBy ¥ |

Analysis of these formulac may lead to an unequivocal conclusion that as r-dependent, the
curve shape determinant parameters in the limit adopt various values that is represented in Table

4.1.
Table 4.1
Values of geometrical shape determinant parameters for z={(r,t) function at infinite

quantities of argument

tl_x:g = z; z—tz} zy Curve shape
r<(n-2) +oo
=(n-2) +00 —0 >0 | 2By Convex curve
r<(n-1) +oo
Inclined curve
r=(n-1) | Bo/o i(DIO/a(Z)) 10 Z ___(ﬂ]_{ﬂo_}
n-1 2
Aq Qg
Horizontal
=n +0 Bo/otg +0 asymptote
Z,= ’30 / o
0 0 +0 +0 Concave
curve

The table shows that when r(n-1), z={(r,t) function is increasing and concave, when
r=(n-1), z=f(r, t) function has an inclined asymptote, which crosses the coordinate origin (if Dy1=0),
up (if Do1>0) or down (if Do1<0); z={(r,t) function may be concave and may approach asymptote
from above (if z"<0) and approach asymptote from below; if r=n, then z={(r,t) function has a
horizontal asymptote, which z={(r,t) function may approach downward (if Dg;>0) or upward (if

Dg1<0); when r>n z={(r.t) function is decreasing and convex.



Thus, analysis of geometrical shape of z=f(r,t) function makes it clear that during
transformation of z={(r,t) there is an open interval [t;, +oo], where r numerical value unequivocally
determines the curve shape. According to the curve shape numerical value of n-parameter can be
established. If z=f(r,t) function is increasing and convex, then r<n-1. If z={(r,t) function has an
inclined asymptote, then r=n. And when z={(r,t) function is decreasing and convex, then r>n.
Hence, in the case of z={(r,t) function attention must be paid to the availability of asymptote and
the limit sign of the function’s first derivative, for r-dependent alteration of only these parameters
allows for unequivocal determination of n. But here too, as earlier, the main problem is a correct
choice of the operating range. The correct interval should be sufficiently approached to infinity, to
exclude availability of turning and inflexion points on this interval. More precisely, an extremely
small operating range should be followed by the turning and inflexion points.

3. In the case of y={(r,t) function, let us first examine the geometrical shape determinant
parameters of a function at infinite values of argument. Constraints of geometrical shape
determinant parameters for z={(r,t) function are sufficiently many, therefore we’ll restrict ourselves
only by the elements participating in finding the limiting values:

Ir
s ) p )
lim y(r,t) = lim [t" D Bit™ Zait"] = r’ﬁ—°( lim ¥t ) (4.6)
e == o i—0 Qg

t—>w

B t(%—l) na()Bo +‘I’1 lim t—l +---
lim y} = r’__o O 4.7
t—w 0 ) r aoﬁo +B1 l t  +---
t—>o

{607 @-n)ouofy +[Dyy + (r-m)B, Jlime ™ +--

. , BO
lim(y—t-y')=¢/~% .
t_m(y y ) g r aoBo +B1 limt’l oo ( )
t—w
( 2 N \
(n-1)[Djg +nB, ] lim t
B t(% _g)]|n(n-1)+ _ o,
- " OTO 2 | ., 49
ol r +((D +nB {(Dlo +nB, XDyo +(n—r)B1)+ D tll,nlt
10 ot
) " 2008 (20 3D + 20(n ~1)otoBoB3 | ) (o)’ J

Depending on r parameter, the given expressions assume discrete values. The results of
analysis are given in Table 4.2.
It is evident from the table that when n>2r>r, then y={(r,t) function is increasing and

convex; when r=n, y={(r,t) function has an inclined asymptote, which may pass in the origin of
coordinates (Dg;=0), upwardly (D¢;>0) or downwardly (Dg;<0); y={(r,t) function approaches the
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asymptote from below (lim Y:t)<0 or from above ( lim y't't)>0. If >n y={(r,t) function is

t—o0 t—>a
increasing and concave, ( lim y't't) <0.
t-—>
Table 4.2

Values of geometrical shape determinant parameters for y={(r,t) function at
infinite quantities of argument, (t—>).

}LE,}, Yt y-tyt Y Curve shape
n>2r>1 +o0
2/n
p=2r>r | +wo -0 >0 | 2(B° / a°) Convex curve
2r>n>r +0
. Bo + Dy, ] Bo Inclm;d asy];nptote
=n o no,Be Vo 10 Y, =nf_o( ot +t]
g \ nogfy
>n +0 +00 <0 Concave curve

Thus, relying on analysis of geometrical shape in the limit y={(r,t) function, the following

conclusion can be drawn:

1) the limit sign of the first derivative of y={(r,t) function does not depend on r parameter;

at any value of the latter it is positive (lim y;) >0.
t—wx

2) The sign of ordinate axis intersection by a tangent of y={(r,t) function depends on r

parameter and changes from minus to plus.

3) The limit sign of y={(r,t) function’s second derivative depends on r parameter. If n<r

(lim y;t)>0, if n>r (lim y';t)<o, while when 1=, then (mny;):o.

t—Hw t—w t—c0

4) The function has an inclined asymptote, when n=r, if n>r — function is convex, if ©>n it is
concave. So, in the case of y={(r,t) function attention should be paid to the sign of second
derivative and asymptote, since dependence of other parameters on n (e.g. the tangent passing in the
origin of coordinates, the first derivative) does not allow for unequivocal determination of n.

The existence of asymptote can be experimentally verified by means of drawing a
regression line on the operating range points and by estimating the experimental curve’s
approximation to linearity. Since the second derivative of linearity dependency equals to zero, in an

ideal case, within the range of errors, the second derivative of an experimental curve is to
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approximate zero. z(r,t)=U/t'={(t) and the second derivatives of y(r,t)=YU ={(t) functions will look
as follows (Table 3.2):

n
Zy =

tHz [0) +(0- r o-1- 1)]—

{ t2(inU)’ +r+[t(1nU)' —rT}, (4.10) |
. _yu U

Yi="33 e, +olo-1)=5 {r(an)"+[(an')2} (4.11)

where (In U)" =d?InU/dt? and (In U)' =dInU/dt. Since by determining r>0, then for performance

of z; =0 and yjy =0 inequalities in the operating range availability of (ln U)" <0 inequality is an
insufficient, but indispensable condition (4.10 and 4.11). The first and second derivatives of

InU={(t) function have the following form (see 3.10 and 3.11).

(InU) i e S (4.12; 4.13)

s+p

s+ 2(s+p)
, it"‘Z(ZkH Q¥ B+ ), t7 Z(2k+1 Q¥ B,

" O, —® ¢=0 k=0 1 k=g- n 2D
(an) t _ 9= q=s+p+ =q-k _ 10

tz s+p t2 %Bot3
e 2Bt ™

Thus, InU={(t) function in the limit (t—0) has an increasing and concave curve shape and
certainly, one can always find extremely great interval of argument, where the inequalities

}i_)xg(an)' >0 and }im(an)" <0 can be performed (Fig. 4.2). At any rate, the check-up of this
—>»00

condition can be readily accomplished by way of transformation of Vi={(x;) curve into InU;={(t;). It

is remarkable that the last turning point (if it exists) of InU={(t) function lies before the inflexion

point.

muf 1

Fig. 4.2 Examples of InU={{(t)

.nU=-InV, +lnﬁ(1+Kit)

i=1

Working interval 0 <t <+oo

2. InU={(t); Working interval t;<t <+oo

\ 4
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n
For an authentic determination of n parameter through the asymptotes (In U) <0

inequality is an indispensable condition, but insufficient. There exist the so-called “hazardous’
points”, existence of which in the operating range is not permissible, either. This problem will be

dealt with in the next section.

4.2, Relative analysis of n-parameter detecrminant transformation s

Study of geometrical shapes of InU={(x), y={(r,t), z={(r,t) functions has made it clear that
by way of them it is theoretically possible to determine n degree parameter. Of particular
importance have r-dependent y={(r,t) and z={(r,t) transformations. As has been shown in the
previous section, n-parameter can be defined by means of asymptote of these functions:

InU=f(t) = WU=mn(By/ag)+nt (4.10)

z=f(rt) = (@En-1) = Z,, =(D—120]+(B—0]t and (r=n) > Z, =fB¢/0y 4.11)
O Qg

=it = (@En=> Y, T/E(—QLH] (4.12)
' ag \ NPy

For proving the existence of asymptote a crucial importance is attributed to the position of
operating range [t;, t]. The regression line built on their experimental points, is, on the one hand, to
maximally approximate asymptote (i.e. [t;, t;]—>), and on the other hand, should be far enough
from the extremely low velocity site, where authenticity substantially decreases because of great
specific (or absolute) errors.

InU={(z) function is directly related with n degree parameter, as inclination of its
asymptote 1s equal to n parameter. In the limit interval, however, finding of numerical value of
asymptotic coefficients is associated with a cardinal error. The only criterion for the existence of
InU={(t) function’s asymptote is a rectilinear estimation of experimental points (for instance,
correlation coefficient). Therefore, it is practically hard to estimate authenticity of the results
obtained, it is likewise complex to establish a correct operating range, since the InU={(t) function

has multiple pseudo-rectilinear sites. Hence, the use of InU=f(t) transformation for the

determination of n parameter is not reasonable.

However, there is quite another situation from the viewpoint of measurement of n
parameter in the case of y={(r,t) and z={(r,t) transformations. For these functions asymptote
existence is determined through r-variation and not by determining the digital parameter of

asymptote. This makes it possible to determine n and estimate the validity of the result. The chief

problem to be solved for y={(r,t) and z={(r,t) transformations consists of the correct choice of



48
operating range, for the curve shape and accurate determination of n parameter depend on the
operating range.

The problem is the existence of the so-called “hazardous points”. The name *“hazardous
points” is stipulated by the circumstance that if the operating range involves a narrow site
constituting the points in question, this may elicit an imitation of rectilinearity that is likely to
become the cause for incorrect measurement of n parameter.

The InU={(t)) function’s inflexion points (to=Inty, ®;(t9)=0), represent one group of
“hazardous points”. Their existence results in the complication of r-dependent y={(r,t) and z={(z,t)
functions’ geometric shapes, formation of the turning and inflexion points. The results of analysis
made from this viewpoint arc presented in Table 4.3, which shows complication of geometric
shapes of y={{(r,t) and z={(r,t) functions, that has been elicited by addition of one pair of turning
points (w=p) and w= (p+1) of w={(r) function. It is seen from the Table that in the presence of
“hazardous points”, y={(r,t) and z={(r,t) functions are the curves of complex geometrical shape. In
the vicinity of “hazardous points” the curve is an imitation of linearity. The number of “hazardous

points” increases as the number of turning points of @={(t) function increases.

Table 4.3
0= f(TO) = f(r’t()) y= f(l‘,to)
N RTR P e
——— ' r ’ 0..
'=0 % z—tzy = Uft} -L y-ty =0 "’"’//
'S0 M 5 =0 et v =0
r=p — | r=p —
o | [A NRECO T
@' =0 . " z-tz, = Uft} \J‘_\ y—tyy =0 _/
@"<0 720 U il Yy =0
r=p r=p '
(D=1'=p+1 Z;=U/t6+l
=0 pw Z— tz't =0 4> . .
@ = S =0 . In the vicinity of “hazardous
®">0 P. - Lo L points” geometrical shape of
r=(p+1) @={(ro), z={(r,t) andy= {(to)
z, =Uft5"! .| functions. Versions are given
o=r=p+l | o+ 2—tz, =0 iﬂ Iy for (14 =Int,, &' =0) when
o'=0 / ; 25 =0 ./ o= {(ro)=r & @={ (ro)=r=p+1
0"<0 R

r=(p+1)
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Another group of “hazardous points” constitutes a pair of inflexion points of InU={(t)
function (Table 4.2). Let us assume that o= f(t) function in At interval has a pair of inflexion points
(@' =0). In the respective At interval (with the help of equations in Table 3.2) let us explore as to
what effect will have the presence of a pair of inflexion points of InU={(t) function on the shape of
z={(r,t) and y={(r,t) functions. At any r quantity in At interval y={(r,t) function will have only two
inflexion points, while z=f(r,t) function is likely to have a far more complex geometrical shape,
with multiple “hazardous points”. In this case, the curve’s geometrical shape at At interval is
dependent on the numerical value of r-transformation degree parameter. It is remarkable that

y={(r,t) function has an advantage in importance of curve shape complexity, compared to z={(r,t)
function (Table 4.2).

Table 4.2

Shape of w={(1), z={(r,t) and y={(r,t) functions at At and At intervals. v is the number

of tuming, Ay — horizontal inflexion and A — of inclined inflexion points. r is the power parameter
of variable transformation.

Position of Curve shape o={(1)
At interval at At interval T 7
r=w={(1) z={(r,}) y={(r,)
I r v | A A vIiA A (173 PR A
Nn<n<o 0 0 0 0 0 0
T < = o 0 0 2 (O]
rn <w ®; <1<y 010 2
n<w = 0 0 2 T
LA 4
r < > ) 0 0 2 AT
I = O 01 <rR<w 1 1 1
I = o = 1 1 1 0]10]2 n=o(t), n=0(t)
I = M > 1 1 1 At=(1:2—11)=(1nt2 - lntl)
®1<1 <13 < Wy 3 0 2 At=(t; - t)
W< <wm |n=a 3107 2 (0,,0,)=> a0 =0=>(9)
0<n<w; |n>o; 3 0 2
I=mn I > 2 1 1 1 (SCC table 3.2)
<1 <n 0 0 0 0 0 0

Let us examine the location and interrelationship of y={(n,t) and z= {(n-1,t) curves’ tuming

and inflexion points (Fig. 4.3).
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T‘ | (n,t) Fig. 4.3. The possible shape of y={(n, t)
v, and z={([n-1], t) curves in t—oo ranges.
n>1l,m#0=>limy; <0; limz; <0
t—oo oo

Turning points:
V- yim9=0; Z(n-1,9=0
Inflexion points:

® — yi(n,t)=0; z;([n-1Lt)=0

: Z([l‘l-l],t)
| >
tit; ty t

In the ranges of high value argument (t—o), if r=n>1 and t=t;, then yj(n,t;)=0 and

no' +o(w-n)=0, ie. co'(t3)=—co(co-n)/n. At the same time, if r=n-1, then for z={([n-1],t)

function, at t3 point we’ll have:

tr+2

2
4 = [co +{o- r o-r-1)]= {(co—n) (n—l)}>0’ 9:0.  BH<ts.
tr+2 n
Let us consider another case, when t?(InU)] =({-m)<0 and at t, point

r
Y (a,to)=2£Uz[aco'r +o(w—2)]=0, (=a). In the case, when r=(a+A), at t, point we’ll have
r’t

G

ye(@+Aty) =— 2.2 [aco +o(e-2a)+Aw' - Aco]— vu [m (o]A So, A sign determines at ty point

the curve shape, sign(y”) =sign(A). That is, in the case of r increase the inflexion point moves to
left.

One more advantage of y={(r,t) transformation over z={(r,t) is evidenced by the position
of their turning points versus r parameter. It is known that dy/dt= (R/ﬁ rt)- ® and
dz/dt=(U/t"*')-(0-1). y'=0 and 2'=0. To fulfill y=0 and 2z'=0 condition one requires
respectively to fulfill ®=0 and (wr)=0, i.e. in the first case we have r-independent, and in the other,

r-dependent condition. Thus, the position of turning point of y={(r,t), as distinct from z={(r,t) does

not alter at the variation of r.
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» Dp1<0
> Do>0

& r>n >

P
. >
>

D t G to

Fig. 4.4. Geometrical shape of z(r,t) = U(t)/f(t) and y(r,t)= JU =f (t) function in the limit
(t—0) at different r quantities

A=r<(n-1); B=r=(n-1); C=r=n; D=r>n; E =r<n; F=r=n; G=r>n

(V) turning and (@) inflexion points.

In the case of a stepwise increase in velocity even number of inflexion points are added to the
curves (see Fig. 3.3).

Hence, within the ranges of argument’s extremely high values at different quantities of r

parameter z={(r,t) and y={(r,t) curves will have geometrical shapes of various complexity (Fig.
4.4).

Conclusions
1. n parameter can be determined by means of (InU)y <0 , z=f(r,t) and y=({(r,t)
transformations. The principle of determination of n parameter relies on the availability of

asymptotes. In the case of z={(r,t) and y=f(r,t) transformations the existence of asymptotes

depends on the quantity of power parameter of r transformation.
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2. In the correct interval further changes in z={(r,t) curve shape occur: increasingly
concave (r<n); = inclined asymptote (r=n—1); = horizontal asymptote (r=n); => complex
geometrical shape decreasingly concave (r>n). In the correct interval there occur further changes in
the shape of y=(r, t) curve: increasingly concave (r<n); => inclined asymptote (r=n); =
increasingly convex (r>n).

3. A correct operating range implies that: a) at operation interval InU=f{t) function should
by all means be increasingly convex and should not contain the tuning and inflexion points,

(InU);, <0 and (InU); #0; b) at operation interval InU={(Int) function should not contain the

turning and inflexion points, +0 and ®’#0; c) approximation of operating range to infinity is due
to the reliability of experimental points, a small specific and absolute error.

4. In InU={(Int) function rectilinearity of a regression line on experimental points does not
authentically express the presence of asymptote.

5. z={(r,t) function, compared to y=f{(r,t) transformation, in the domain of extremely great
argument, is characterized by a complex geometrical shape, that strongly attenuates significance of
the result.

6. From the viewpoint of setting up n parameter, advantage is attributed to y={(r,t)

transformation.

Appendix. Below in Fig. 4.5, an example of the method for a rapid determination of a
curve shape, making it possible to solve many a problem. sign(o & ') = sign(U’' & U" );
U'=Ua/t , U"=(U/t)o' + o(o-1)].

mTﬂ):n < —.——n-rn-rr!-—
2 oo i
=] < .
(n=0 e F X LYY :l -
_——— -_— — e —————— d.—..—“—.h"** t
_ + + + + + + )
si 0/+ + + + + +
gn @ + +
, + + + + + +
sign (@—1 0| - - 0 + + +
gn (o-lo + o+
. + + + + + +
sign®’ + |+ + +
g + 4 000
. + + + + + +
sign(U7) +1?7+7? |+ + 4+ +++

Fig. 4.5. An example of a rapid determination of curve shape
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4.3. R(t) function
Suppose at [t;, t,] interval InU=f(t) function is a continuous and convex curve (InU)j <0

and InU={(Int) function has no turning and inflexion points, then for any t; point of the interval

(t)<t<t) one can always find such r=R;, that the equation be fulfilled:

” H Y \ U(t.) n !
Ytt(Ri’ti)z(R\/l U(ti)) =((R—)21)[Ri(an) +[(an)]2]=0 (4.14)
i
At the same time, one can always find such a positive number A, that if r=[R;~A], then
y't't([Ri —A],t)>0 and if r=[R;+A], then y't’t([Ri +A],t)>0, i.e. respectively with r increase the

following change will occur in the curve shape [U] = [—] = [N)].

R is a t-dependent value and represents that quantity of r when at t-point yf =0. As

o’  _[tnUyF

emerging from (4.14) formula we obtain:  R(t) = - " (4.15)
o(t)-oi(t) —(nU)g
s+p 2(s+p) s+p
X AN A
R ( t) _ q=0 q=s+p+1 k=q-s-p ( 4.1 6)
2(s+p) s+p ’ )
Zt"q[Z(Zk q+1)¥B k} + Z t9 Y(2k—q+1)¥,B,,
q=0 k=0 g=s+p+l k=q—s—p
while by dividing the nominator of the equation (4.16) by the dominator we get:
R(t) =Y 0Ot =n+0,t2+0,;t> +
where Og=1, ©,=0, ©, = {Dlnglz +18,) 2Dy } . etc. (4.17)
n*(aoBo) naof,
F 3
R(t) Correct interval Error

limitation

Limitation
onshape 0 ........2\....)

e
il
o

- e e o - - = = = ==

B T

Fig. 4.6. The plausible elements of geometrical shape of R(t) function
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R(t) function has a complex geometrical shape (Fig. 4.6), but at a correct interval it
assumes a simple shape and approximates a horizontal straight. It is especially remarkable that if we

don’t take into account a breakpoint, from the geometrical point of view, there is a strong analogy

between (0=0"), R(t) and o (r) functions (Fig. 4.7).

o, R A

V(x)
Graph Ke | 11 | M2
A -- 0 0
B 0.1 10.11}0.1
C 05| 5 |01
D 0.8 | 10 | 500
Int
-6 T T . T T T ) E 1 01 10
-1 -10 -5 0 5 10 15
Fig. 4.7. o={(z) and R={(z) functions . 2n,x . n2x2
drawn on the basis of V(x) function. V) \% p K3
X)= =
1=In/x), n=m=3, K,=20, Kn=200. €k K_Y x ) x Y
I+ | 14+— [1+—
0000000 — (D= f(‘l.'); — - R= f(‘C) X Km KP
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R(t) function has a horizontal asymptote limR(t)=n, tlim R{=0. , when the argument has
t—oo —>0

extremely high quantity the sign of limiting quantity of the first and second derivatives of the
function depends on the signs of ¥ ©;t™ polynomial’s coefficients.

i=2

R =-20,t7 -30,t™ —.-; RT=60,t™+120,t7 +---  (4.18)

That is, at extremely large quantity of argument, R(t) function is either decreasing —
concave, or increasing — convex. R(t) function undergoes break when ©'—w= t?(In U)g =0 (4.15).
When =0, then R(t)=0, and when w’=0, then R(t)= w. Analysis of R(t) function and its derivatives
has demonstrated that at correctly selected operating range, (InU)f <0, the interval of InU={(t)
function from the last inclination point to infinity, R(t) function has no turning point and the

function is monotonous.
By means of R(t) function, from the point of view of authenticity of the result, based on

experimental evidence it is possible to estimate whether the interval is correct. Suppose we have a

correct (t1, tp) operation interval by € point, (,<ti<ty; 1<i <g). Let us introduce some new values.

if Z@it_i ~0, then R(t)=n = R(t) in null approximation
i=2
if ZG)it"i =0, then R(t)=n+ @)zt_2 = R(t), in the first approximation (4.19)
i=3

if Z@it_i ~0,then R(t)=n+@,t2+ G);t—3 = R(t)i in the second approximation (4.20)
i=4

1. AY=(Yi—yi) is the difference between the computed and

R(®) | experimental points. The regression line corresponding

R, « point is considered as a computed value (Fig. 4.9)

11::: 2. R, is that quantity of r, when the first change of AY; sign
R+ of points occurs.

3. R, is that quantity of r, when there occurs the last change

of AY; sign of points. If we do not take into account the

experimental error, then at a correct interval we’ll have:

Fig. 4.8 See the text

®<0 = R; corresponds to t; and Ryt; or ©>0 = R,

corresponds to t; and Ra-t; (Fig. 4.8).

— - £ t
4.Mean R = R(t)=lZRi v [R(t)dt =n+ 9, +®3(t2 +t1)+--. 421
€

izl 274 tt, 273
5. Rg is that quantity of r, when on a correct interval y(rt) curve maximally approximates

rectilinearity.
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One can judge correctness of operating range by (E—n) value, the smaller (ﬁ—n) , the
more correct is the operating range. Let us compute (R-n)

In the first approximation:
(R, ~R)E

(@ <0), (R':)>0 = R1=n+®2t12 and R2=n+®2t§ = 0,=- & _t?)
: 271
®-n)= Be—RUL 422)
(t3 1)

© <0) (R)<0 = R, =n+0,6; and Ry =n+0yt; = 0 ="—5— 5
274

®-n)=-Ra=RIUL 4.23)
(t2 -t
In the second approximation three sets of equations will be generated
= ® ®, ©
® <0) = R=n+ ®, +(t2+;12®3, R1=n+®—22+—33, R,=n+=2+=1
t,t, 2t7t5 tr 2 b
= Q) e, ©
©>0) >  Rens 22, O¥0)0 g .6, 8 0 R ons 2.5
t,t, 2t7t5 t; t 14
By solving them we get:
if (R})>0, (4.24)
®en)y, = ROE-D-G-DR-R +R )0 1) | Ry —R)E + )t 2Ry -6)
(t;-t,)’ (t; —t,)’
if (R!)>0, (4.25)
®en), = RE D= -HR-R +Ry)(t+t) Ry =R+t~ 2Ryt =)
n= 3 3
(t,—ty) (t;—t;)

Thus, relying on experimental data, it is possible to compute R, Ry, Ry, Ry, (R-n h
and (R-n )u values, as a result of which we can determine n parameter and estimate validity of the

result (how much correct is the operating range).

Appendix 4.2
n determination mainly relies on setting up the curve shape (on the sign of the second

derivative). Therefore, great importance is attributed to a simple method which enables to solve this

problem.
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Fig. 4.9. On the points of Y/=as+bit function regression lines
y(r,t) 3 are drawn, AY;=(Y;—y;) and the sequence of AYi=(Yi-y;) value
signs are set up.
1. 1<ty = sign(AY)=(-,—,—+++———) = Yg >0
2. r=ry = (AY)=(0,0,0,0,0,0,0,0,0,0) = yg =0
3. 19 = sign(AY)=(—,—,—,+,+,+———) = y't't <0
0 existence during change of a sign is admissible

(+s_) C>(+,0,—) or (—’+)©(_s0a+)

Estimation of the sign of dy/dt and dzy/ dt® is possible by means of regression. In
regression analysis a regression line plays the same role as a mean arithmetical. Proceeding from
this, the regression line is the mean of the function’s tangents and meets the following
requirements: its slope is the mean of that of functional tangents, intercepts of the ordinate axis is

the mean of those of functional tangents and the regression line passes the point whose coordinates

are y; and E , regression lines Y; =a, +b;t are drawn on experimental points of y(r, t) function
and sequence of signs of AY; =(Y,~y;) value for each point is set up. Distribution of difference
(AY;) sign of computed Y; and experimental y; values makes an idea of the sign of the second

derivative.

The regression line cuts the monotonously concave curve in two points (Fig. 4.9). It can be
readily proved that the monotonously concave curve (y3 >0) would have the following sequence
of signs:

) = (HHHHH) 2 ()

The regression line cuts the monotonously increasing and convex curve (y§ <0) again in
two points (Fig. 4.9) and the sign distribution looks like:

(+,+,+,+,+) = (—,—,—,—,—,—,) = (+,+,+,+,+)

In the case of rectilinear function (yf, =0), the rectilinear regression line will coincide the
experimental curve in the error ranges.

If one bears in mind that r quantity accounts for sign(yf,) , then r will also account for a

change of the sequence of AY; signs.
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4.4. Method for n-determination

On the strength of analysis dealt with in the previous sections, a conclusion can be drawn
that y={(r,t) transformation has a clear advantage for n-determination, while determination of the
first and second derivatives from the given function allows for finding out whether the asymptote is
present and the result is authentic, mainly by the way of regression method (Appendix 2).

The determination method consists of the following stages:

I. Setting up correctness of the operating range

1. Specific error is a determinant of interval’s upper limit
2. Lower limit of the interval is determined by “hazardous points”.

I1. Computation of n-quantity

II1. Estimation and correction of reliability of the result.

I. Operating range is located in the extremely low velocity site, since it should maximally
approximate infinity (t;,tz)—o0. Therefore, upper boundary (lower boundary for V=f(x)) may be of
the error order. Measurement of extremely small values is bound with great errors. To solve this
problem it is required to estimate a specific error - g =o,/V,;. To achieve an authentic result
specific error equal to 0.2 is admissible for some points of interval. But the majority of
measurements should satisfy the condition £;<0.1, and the number of points should not be more than
or equal to 5.

As we have pointed out earlier, the presence of “hazardous points” in the operating range
may become the reason for incorrect determination of n. Its lower boundary depends on the nature
of molecular mechanism of enzyme system, as the curve originating there may have “hazardous
points”. Their “elimination” is possible if we explore the interval to the first turning point of V=f(x)
function. However, as geometrical shape of y={(r,t) function is r-dependent, it is clear that

“hazardous points” may again be found in this function. Therefore, gboapgs (InU)y <0) is

required, due to which the experimental points available on the interval must yield a convex curve
for InU={(t) transformation. Yet, even this constraint does not rule out the danger of existence of
“hazardous points”; therefore, correction of the operating range should be done additionally with
InU={(Int) function. Within the ranges of operation interval it must not possess the turning and
inclination points. These constraints extend the permissible lower bound of operating range, but
with this we can avoid the danger of the presence of “hazardous points” on the operational interval.
II. n-determination is made via the asymptote of y={(r, t) function existence of which

depends on r parameter (Table 4.2; 4.7-4.9, § 4.2-4.3).
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An asymptote can be discovered by a regression line drawn on the points of a correct
operation interval and by estimating the approximation to rectilinearity of the curve plotted on

y:=f(r, t) points. Proceeding from the least quadrants, minimalization should be made of the integral

ty

I= I[y— (a +bt)]2 dt, that is equivalent to finding such a, b and r parameters for which I would be

t
minimal. For this, to solve a set of three equations (I; =0, I; =0 and I, =0) is necessary.
However, to solve the problem posed the use of the given approach is not reasonable. On the one

hand, it is a complex procedure and it is not lucid, on the other. It is necessary that the

transformation resulting from r-variation be followed and the needed corrections be introduced in

the calculations.

Suppose, we have correctly selected, consisting of k number points, operation interval [t, t;]
and r-sequence, min(r) < r; < max(r) with a step Ar=[r;+; -1;]. For each r; a regression line
Y; =a, +b;t points and the following values are computed:

1. (AYj) signs sequence. Distribution of AY; sign gives an idea of the sign of the function’s
second derivative. In the case of concave curve distribution of AY; sign has the following pattern

(—,-**y—+,-*-,+,—,---,—), if the curve is convex, then (+,:--,+,—,--<,—,+,---+)"is obtained. And in the
case of a straight line distribution of AY; sign is of a chaotic character, induced by an experimental
error. It should be noted that the above considered approach is not an accurate method for the
measurement of the second derivative, but it provides a certain idea of the curve shape, that was
quite sufficient for our purposes.

£ (Y5-vg) W)
2.Weighted mean quadratic error: MY, = Sl BIEA | o(y)= V) R (426)
' on( o(y;) ViV

: k
3. A measure (estimation) of linearity: v; = [Z ij -k & v, =k-2
=

Fiexp - (k_2) - ; pi=const, V1=k([,l-1), vo=k-2
> ;- Doty
j=1
k
vy = Zp,j -k & vy=k-2
Fup < = 427

pi=const, vi=k( p-1) & v, =k-2



Vv|

4. The averaged approximation coefficient, MV = Z| (428)
k& o(Vy)
k
D (¥ —)’i)(t—ti)
5. The correlation coefficient, CC= 1=1 - (429)

LZ:(YH- —yi)zgﬁ-ti)zr

We determine r=R, for which MY, MV and F.,, values are minimal, while CC is a maximal
quantity and at the same time there occurs an acute alteration in the signs sequence. As a rule, for a
more precise determination of Ry it might become necessary to reduce Ar step (according to the
necessity up to ~0.1) and vary r in a narrower interval.

Ry optimal is the most approximated value to n, while the regression line drawn for r= Ry is
a circle, most approximated to asymptote. It is reasonable to compute the regression coefficients
and their errors, as well as to plot the tangential hyperbola (V,) and their graphical collation
V=£{(x).

n_n
Yr=atbt ; 8 6(a0) ; by 2o(by); V= (W/o,)"x (4.30)

[1+(aa/ba XTI

III. There is a simple way for Rg estimation. From Ry determination it emerges that for each

In(Yg, (t;))

t; point the equation r; = U
i

. should be performed. r; is a mean R(t) = Zri /k , while its

>Ew-+f]?

mean arithmetical would be error o R(t) k(k 1)

From Ry experimental

measurement it follows that Ry is inaccurately measured mean. At the same time it is obvious that
R;<R¢<R; and R;<R(t)<R;. So, it can be supposed that estimation of AR = IRo —E(T)l < O‘(R(t)) and
Ry is possible by means of G(R(t)) value. It should be mentioned that in an ideal case Ry =R(t)
and considering c(m) value may be regarded that Ry = R(t).

As has been demonstrated in the previous section, by calculation of R , R and Ry, it is also
possible to determine n-approximation of (R —n ).
Bearing in mind all the considered, R or R(t) gets rounded up to a whole N number and is

%
[ Y(N-N) C o In(Yy)
calculated o(N) —[__k(k—_l)- , while N; = nuU, -
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Hence, the numerical number of n parameter is N+o(N). On the basis of the above-stated it is

quite possible to implement a computer program for the determination of n-parameter. Fig. 4.10 and

Table 2 give a concrete example of determination of n-parameter that has been accomplished by a

special computer program.

-2 4

-3

Determination of the number (n) of sites assigned for essential activators of Na*

The composition of the reaction medium is: 0<[Na']<22mM, [MgATP]=2 mM, [ATP{=34uM ,
[Mg"1=5mM, Triss/HCI buffer 20mM, pH=7.7.

0

Inu ]
-1 4
22 4

-3

0,0

00

Inu

0,1 02 03 -4,0

01 02 03

0,20 1 MY
0,10 -
F W
0,00 . v \
3,0 3,5 4,0 4,5
r

Fig. 4.10. n-determination, graphs are plotted on the correct operation interval
A - InU={(t), a convex curve,
B — InU={ (Int), a curve without turning and inclination points
C - y={ (1, t). =3 concave, =4 straight, r=5 convex curves
D and E - MY={ (r) and F=f (r). MY={ (3.8) and F={ (3.8) = min

Table 4.3
T; 1,2,3,35 3.6,3.7 3.8 3.9,4,5,6,7
sign(AY;) —— =ttt —-——+—-—4+-+ -—+-+—-+—-+ |++++-——++
r;=3.7 —
R—-n) R-n + v
min MY min F ®-n) | ®-n), Ro £ o(Rq) N
0.072 0.005 -0.4464 -0.1312 3.8003 + 0.0362 4
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As seen from A and B in Fig. 4.10, InU={(t) and InU={(Int) curves have no inclination
points, while InU={(t) function has a convex shape, i.e. operation interval has been correctly
selected. Maximal linearization is achieved when r=4 and weighted mean quadratic error and F test
adopt a minimal quantity when r=4 (Fig. 4.10 D). When step is reduced up to 0.1, MY and F test are
seen to assume a minimal value at r=3.8 (Fig. 4.10, E). From Table 4.3 it is clear that the

distribution of AY) sign is chaotic when r=3.8. From this it follows that in this case the number of

Na" as an essential activator equals to 4 (n=4).

4.5. Determination of m-parameter

In the basic velocity equation (3.1) let us substitute argument t=1/x, then we obtain:

x" ) ox! tmzp:dp_iti
=0

V=Tt s V(== (4.31)
0 ZBixl ° X:Bs—itl
i=0 i=0

It is clear that V=f(x) and V=f(t) functions have an absolutely identical analytical shape. It
must be noted that n parameter is transformed into m parameter o; = ap.i , B, = Psi. Proceeding
from this it is obvious that the theory and method used for determination of the number of sites (m)
for complete inhibition would be absolutely identical with those applied for essential activators (n).

Only instead of U={{(t) and y(r, t) functions U= {(x) and y(r, x) are used.

Appendix 4.3

In the case if n=0, (V(0) =, /B, #0), with slight transformation we obtain:

Yax D@ a)x a3

AV, =V(x)-V(0)=2— -0 i -
ZBixi Ps BOZBixi

i=0

whose exploration is possible with the application of the above methods. The same applies to the

case, given by: m=0, ( V()= % #0)

s

ia'p—lti a i(ap—iﬁs —asz_i)ti —-a, Zs:Bs_iti

AV, =V(t)- V(o) = l?—‘ ——2_ i=p+!

Z_O:ﬁs—lti Bs BS_ZS:Bs—iti
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Chapter 5. ESTIMATION OF p PARAMETER

5.1. Geometrical shape determinant parameter of U=f(t) curve

For deciphering of the molecular mechanism of multi-sited enzyme systems, as pointed out
earlier, one of the principal tasks is determination of the degree parameters in the basic velocity
equation. The only way to solve this problem is the analysis of the geometric shape of a curve. It
implies analysis of the first and second derivatives of the respective function (determination of their
signs) and accordingly, setting up the number of turning (v) and inflection (A) points. In addition, it
is reasonable to establish the number (p) of the points at which the tangents would cross the origin

of coordinates (Fig. 5.1).

i

Fig. 5.1. Possible geometrical shapes of V={(x) and U={(t) functions

4 — the tumning, ® — inflection and * — the points at which the tangents go through
the origin of coordinates. Delineated in the Fig. are the sites of n, m. p determination —
estimation.

The method for determination of n and m parameters has been discussed in the previous
chapter, as regards p parameter, determination of its numerical value is complicated. V={(x) and
U={(t) functions may have curves with geometrical shapes of various complexity, depending on n,
m, p, o and P; quantities. With ligand’s extremely small and large concentration ranges the curve
shape is mainly determined by n and m parameters, while in the middle section it is p parameter that
mainly accounts for the curve shape (Fig. 5.1). This conclusion has been made relying on the fact
that p is the number of the sites assigned for partial effect modifiers and p does not participate in the
formation of V={(x) and U={(t) curves in the constrained sites.

Let us examine equations U'= 0, U-tU’= 0, U"=0 and their respective roots v, A, p. For this

let us use the rule of Descartes’ signs: the quantity of true roots of the equation is equal to the
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number of sign change of the coefficients, or is less than this quantity by even number. The tables

(5.1. 5.2, 5.3) below present the results of this examination. The following designations have been

introduced in the tables.
DS = [sign( lim U't) = —sign(lim U} )], IS= [sign( lim U't) = sign( lim U't)]
t—>+o0 t—0 t—>+o0 t—>0
Table 5.1
S+p y
n-1 -
t l(Z__‘,‘I’kt vip |
ap#0; U, = 0 2=0; ) ¥t =0 (v-root)
p » k=0
Zait !
i=0
\I’k \Po ...... ‘Pn ‘Pn-l- | EEREEE ‘Pn+2p. 1 \I‘n+2p ...... ‘Ps-}»‘p
n>1
si + ...... + + ... + - s -
m=0 &
v DS= 1<v<(2p-1)
\Pk ‘P() ...... \Pn ‘Yn+] ...... ‘Pn+2p-l ‘Pn+2p
n>1 sign | + ...... + | £..... + Hy, 0
m=0
v DS=> 1<v<(2p-1) IS=> 0<v<(2p-2)
‘Yk ‘Po ’ Y, ‘Pz ...... "I"zp "Pzp+1 ------ ‘Pzp+m+l
=1 -
sl +, + + ...... % - e -
m#0 st
\Y DS= 1<v<(2p-1)
Wi Yo, ¥ Y, ...... Yo Wop+1
n=1 sign +, 4+ + ......xHgy 0
m=0
\Y DS= 1<v<(2p-1) IS=> 0<v<(2p-2)
\Pk \Ilo \P 1 eeeeen lPZp_ 1 \PZP ...... ‘{’2p+m
n= .
si 0 +Dyg...... t - eeees -
0 gn 10
\% DS= 1<v<(2p-1) IS= 0<v<(2p-2)
‘Yk To \P] ...... ‘f’zp-l \Pzp
p=0  [“en 0 +Dig...... + 0
m=
\ DS = 1<v<(2p-3) IS= 0<v<(2p-2)

Thus, if n#0, the number of turning points is 1<v<(2p-1) (DS) and 0<v<(2p-2) (IS) and in
the case when n=m=0 we have 1<v<(2p-3) (DS) and 0<v<(2p-2) (IS). Proceeding from this, it is

possible to determine a minimal quantity (Pmin) of p, which is required for the availability of v
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number of turning points. Similarly, one can define the number of points (i) at which will go the

tangents passing through the origin of coordinates (Table 5.2).

Table 5.2
S+p
n -k
t kz_‘a(bkt oo |
o 0; U-tU; = - 5= =0; Zd)kt“‘l =0 (p-root)

P . k=0

Zait-l

i=0

¢)k (DO ...... @n-] (Dn ...... ®n+2p 2 ®n+2p-l ...... ¢)s+p

n>1
sign — eee. - | £ ...... + O +
m=0
T DS= 1< p <(2p-1)

(Dk (DO ...... (Dn-l (Dn+l ...... q)n+2P 2 ®n+2p_1’ ¢n+2p

n>}) sign — . - + ... + +, +
v DS= 1< p<2p-1)

(Dk (Do (Dl ...... (DZp-l (sz ...... q)2p+m+1
n=1 [ gion 0 +Do; ...... + |- ... -
m=0

vl DS= 0<u<(2p-2) IS= 1<pu<(2p-))

(Dk d)o (Dl ...... (sz-1 q)zp, (DZPH
n=1 sign 0 iDo] ...... + + . +
m=0

Tl DS= 0<p<2p-2) IS=> 0<pu<(2p-2)

CDk (Do (D1 ...... q)zp-z (DZp-l
n=0 [ gion + + + |+
m=0

11 IS= 0<u<(2p-2)

Dy @y D ...... Drpz | Pop1, Pop

n=% sign + + o + +, o+
V] IS= 0<pu<(2p-2)

As seen from the Table, the number of points at which goes the tangent passing through the

coordinate origin also depends on p degree parameter, also according to n, m, DS and IS quantities

respectively on 0<p<(2p-2) or 1<u<(2p-1). Proceeding from this, it is possible to define a minimal

quantity of p (pmin) required for the availability of p number of points. A far more complex picture

is obtained while exploring the inclination points. They ought to be considered, for there might be

such a curve which has no turning points and the tangents passing through the coordinate origin.



Table 5.3

S+2p

n-2 —q
t [ ZAqt
az0; UL = a0

.

s+2p

ZAqt_cl =0 (Ap-root)

3
P . q=0
i=0

Aq Ag...... An | Awrreenen. Ans3pa Anispt...... Asiop
n>1 sign + o + = + + . +
m=0 Even p IS=> 0< A<(3p-1)

A

Odd p IS=> 0 AL(3p-2)

Aq Ao...... A | Aprreeene. Ani3p2 Ant3p1, Waegp

i + + i s
1 sign | + ...... + 0, 0
m= N Even p DS= 1I<A<(3p-2), IS= 0<A<(Bp3)

Odd p DS= 1£A<(B3p-3),IS=> 0<A<L(3p--2)

Aq Ao, A1 A I A 3p-1 A 3peeens A 3pt+m+l
n=1 sign 0, 0 = + + +
m=0 N Even p DS= 1£A<(3p-2), IS=> 0<A<L(3p-3)

Odd p DS= 1A<(3p-3), IS= 0<A<(3p-2)

Aq Ao, Ay A o Aspy Asp, Asp
=1 sign 0, 0 + ... + 0, O
m=0 N Even p DS= 1<A<(@BpH4), IS=> I<A<L(3p-3)

Odd p DS= 0<A<(3p-3),IS=> 0<A<(3p4)

Aq Ao Aol Asps Aspy...... Aspim
= sign 0 + ... + + ... +
m=0 N Even p DS= I<SA<(3p-2), IS=> 0<A<(3p-3)

Odd p DS= 1<A<(3p-3),IS= 0<A<(3p-2)

Aq Ay, Ao Asp Aspy, Asp
0=0 sign 0 o t 0, O
m=0 N Even p DS = 1SA<(3p4), IS=> 0<A<(3p-3)

Odd p DS= 1<A<@@p-3),IS=> 0<A<(3p4)
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sign[tii)lgzo (U")] and the number of turning (v) and inflection (A ) points and the number of the

Thus, the geometrical shape of U={(t) curve is defined mainly: signs sign[ lirjr:100
t—>

tangent crossing the origin of coordinates (p).

5.2. Determination of ppin by the curve shape

Suppose n and m quantities are identical for two U={(t) and U={,(t) functions and their p
parameter is, respectively, p; and ps, (p1<pz). U={i(t =) function may have a definite number of
curves of various shapes. According to the law of Descartes’ signs, the number of curves of various
shapes for U={(t) function may be greater, though among them availability of the curves of all
shapes characteristic of U={;(t) function is expected. So, with an increase of p parameter all the
available curves are repeated and the curves of new geometrical shape are added.

From this it becomes evident that application of the method for the analysis of geometrical
shape of curves it is impossible to accurately measure p parameter, but in the case of fixed n and m,
when the number of v, p and A points as determinants of the curves geometrical shape is know n, it
becomes possible to set up Pmin quantity. By means of Table 7, presented below, P, determination
is possible.

Table 5.4
Interrelationship between the number of degree parameters (n, m, p) and special points (v, p
and 1), in the case of diverse (DS) and identical (IS) sign possessing limits lim U’& lim U’,

t—0 t—w
lim(U-tU") & lim(U—-tU") o limU"& lim U"
t—0 t—oo t—-0 t—w
n&m U=0)=v | (U=tU")=u 5dd p(U o)z%venp

n>1] DS 1<v<2p-1 | 1<pu<2p-l — —
m#0 IS — — 0<A<3p1l | 0<A<3p2
n>1 DS 1<v<2p-1 | 1<u<2p-1 | 1<A<3p-2 | 1<A<3p3
m=0 IS 0<v<2p-2 — 0<A<3p-3 | 0<A<3p2
n= DS 1<v<2p-1 | 1<u<2p-1 | 1<A<3p-2 | 1<A<3p3
m#0 IS — 0<p<2p2 | 0<SA<3p3 | 0<A<3p-2
n= DS 1<v<2p-1 | 1<u<2p-1 | 1<A<3p4 | 1<A<3p-3
m=0 IS 0<v<2p2 | 0<p<2p2 | 0<A<3p3 | 0<SA<3p4
n=0 DS 1 <v<2p-1 — 1<A<3p-2 | 1<A<3p3
m#0 IS 0<v<2p-2 | 0<pu<2p2 | 0<A<3p-3 | 0<A<3p-2
n=0 |DS 1<v<2p-3 — 1<A<3p4 | 1<A<3p-3
m=0 IS 0<v<2p2 | 0<pu<2p2 | 0<A<3p3 | 0<A<3p4

If n and m parameters have been defined and represent constant values, then P=P;, is such
a quantity of the parameter, which provides U={(t) with a definite number of special points v, p and

A. Pnin satisfies the principle of a minimal model, which implies a minimal number of enzyme
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forms and reaction steps between them, their linkage under a certain rule. At any concentration of
ligand Py, provides the coincidence of geometrical shape of theoretical and experimental curves.
Genuine scheme and a minimal model have identical n, m, v, A and p, but may have different
quantity of p and s. In the genuine availability of all sites of a minimal model, of enzyme forms and
transitions between them is imperative, although it is not ruled out that there were additional forms
and transitions, which have no effect on geometrical shape of experimental curve.

Thus, from the examined material, it is evident that we may establish Py, Vs curve turning
point (v), vs. inclination point (A), vs. the number of the points at which the tangent (i) crosses the
coordinates’ origin, that would eventually lead to pmn determination.

It must be noted that the present analysis of pmin measurement is of a theoretical character
and its implementation is rather difficult. Therefore, it is reasonable to present the readily applicable
tables as a reference book which for definite quantities of n and m would exactly show the

dependence between pmiy and the number of special points v, p, A.
S -
Let us examine U={(t) curve whose p=0 (Fig. 5.2) U= (t“ / o )ZBit_‘
i=0

In this case, there may exist only 5 curves of various shapes. Such curves at any quantity of
n and m have no inclination point. They may have one turning point and one tangent passing

through the origin of coordinates (JO).

n>1 | n>1 =1 =1 | n=0,
m#0 | m=0 | m#0 | m=0 | m=0
1 0 1 0 0
1 1 0 0 0
0 0 0 0 0

Fig. 5.2. U={(t) curves’ shapes; p=0. —-— asymptote; -- - - the tangent passing at Q.
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Bt

tn

M-

U={(t) function may have the curves of more complex shapes, when p=1, U= i=0

g+ alt—l

In this case a curve of 22 diverse shapes may exist. 5 of them are repeated from p=0 case (Fig. 5.3).

From the curves and Tables in Fig. 5.2 and 5.3 it is seen that there is a strict and unambiguous

interrelation between Py, v, 4, A numbers and n, m parameters.

t t t t
3 8 1*, 10* - the curve of two different shapes
is possible
o 4* 6% 7T* - existence of the tangent
A - passing through the origin of coordinates is
defined by sign Dy, that is expressed in the
- Table by several axes of abscissa
t t
Fig. 5.3 n>0 n>1 =] n=1. m=0 n=1 n=0
m=0 m=0 m=0 ’ m= m=
Ne 1 2 3 14]S5 6 7 8 9 10
v 1 0 1 | 1|1 1 10|00 1 0| 0
v 1 1 1 1 1 1 0 1100 0 0 0
A 2 0|0 ]0](1 0l 0|[0]0]O 1 0} 0
Do <0 | >0 <0 >0 | <0 {>0]| >0 <0 >0 <0
sign(U") >0 DS | >0 |[>0 [ DS | >0 | >0 | >0 [>0| <0 | DS <0 | >0
sign(U) | DS | IS [ DS |IS| IS | DS | DS (DS|IS|IS| DS [1s | Is

Fig. 5.3. Shapes of U={(t) curves; p=1 (additional shapes, which U={(t) is not in
possession of, p=0). DS — different signs, IS — identical signs.
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It should be specially pointed out that when n=0 and m#0 for the geometrical shapes of a
curve to be unequivocally displayed the sign of Dg; expression is of importance. It must be noted
that while defining n parameter Dy sign determines the sign of asymptote intersection of the
ordinate axis and at the same time coincides with the sign of the regression A coefficient. The
material presented in Fig. 5.2, 5.3 shows explicitly that with an increase in pmin, the number of
curves increases substantially and complicates their geometrical shape. When pmia=0 (Table 5.2) the
second derivative of U={(t) function is positive and concave curves are obtained. Exception makes

n=1 m=0 case, when we have to deal with single-sited enzyme systems and a straight line is
obtained (Utt = 0). When n>1 and m#0 the curve is concave and at small quantity of argument

approximates the ordinate axis. When n>1 m=0 the concave curve at infinitesimal quantity of
argument cuts the ordinate axis. When n=1 and m#0 the concave curve at an infinite quantity of
argument has an inclined asymptote. If n=0 at an infinite quantity of argument the function assumes
limited value, therefore, the concave curve asymptotically approximates the given value. When
Pmin=1 (Table 5.2) the sign of the second derivative in the limit U={(t) function may be as positive,
so negative. Accordingly, the curves have both concave and convex shapes. When n>1, m=0
geometrical shape of curves resembles the same situation in pmis=0 case, but in contrast to it, has
two inclination points, which may be arranged consecutively on one or the other side of tuming
points. As seen from Table 8, in pmin=1 case compared to ppmix=0, max value increases from 0 to 2,
while max and maxp value is constant and equals to 1. It is remarkable that when n=1 and
m=0=A=p=0. Similar picture is observable in pmi,=0 case, but the difference lies in the <econd
derivative. When puix=0 and when pmis=1, in the first case we will obtain a straight line, in the
second — a convex curve, which has an asymptote at infinite quantity of argument. The geometrical
shape of a curve gets rather complicated when ppi,=2 (Table 5.5-5.10). Compared to pmin=1
increases max v number from 1 to 3, max A number from 2 to 4, while maximal number from 1 to
3. Hence, on the basis of the tables (5.1; 5.10) it may be said that they actually represent a reference
book with the help of which relying on the geometrical shape of the experimental curve it is
possible to set up pmin quantity. And determination of n, m and pm, will enable to decipher the

molecular mechanism for enzyme system (a minimal model).

Conclusion: If in the site of extremely small and large quantity of argument U={(t) curve
shape is known, then according to the number of turning and inclination points, as well as to that of

tangents passing through the origin of coordinates pmi, can be determined.



71

Appendix 5.1. By means of the tables given below, based on geometrical shape of U=f{(t)

curve, it is quite possible to find pmin.

1. On experimental U={(t) curve v, u, A are verified.

2. Sign [U’,U-tU",U’"] (t—>) and in (t—0) sites is verified.

3. The data corresponding ppmn is sought.

Table 5.5
U={(t) curve shape at extremely small and large quantity of argument
t—>+o0 sign( lim U't) sign( lim (U - tU’t) sign( lim U;t)
t—w t—oxo t—o0
n>1 +00 —0 +00
| e E [
Qo Og o t—w
n=0 D—lzo(lim t"l)zi-O Boyg zlgl(limt'3)=i0
ao t¢e-o ao ao temo
t—0 sign(lim U’t) sign(lim(U - tU’t)) segn(lim U't't)
t—0 t—>0 t—>0
m#0 -0 +00 +00
Ho, Bs 2
m=0 9 PS50 |2 (0 Hyy -ty Hot)
ol ap o’ ( P P
Table 5.6
Pmin determination (n>1)
n >1, m#0 n>1, m=0
(limugt)>o ( ) ( ) ( )
® limU% {>0 limUg [>0 lim Uj |<O0
= t—>0 * t—0 “ t—0 "
v 1 ]1]1] 3 |oJ1]oJt[2]3[0Jo|1] 2
A 0 1214124 0 2, 4 2 1 |3 1,3
1! 1 1, 3 1 1,3 1 1, 3
min 0|1 2 01 2 1 2
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Table 5.7
Pmin determination (n=1, m#0)
n=I1, m#0 (limU’t't)>0 (lim U’t't)<0
t—w t—»0
\Y 1|1 1 3 1 1 3
A 0(0]2 4 2 1 3 3
Dp>0 | 0| O 0, 2 0 2 0, 2
p| D=0 | - [0 0, 2 —
Dg1<0 — 1 1, 3 -
Pumin 0|1 2 1
Table 5.8
Pmin determination (n =1, m=0)
w=l,m=0 | VH0 (lim U;tj <0 ( lim U'{t) >0
Pmin=0 t—o t—o
v 0 o [ 1 2 | - T o1 2 | -
A 0 0, 2 2 - 1, 3 1 -
(th_% U't't) >0 Doi>0 | O 0, 2 - 0, 2 0 -
p| D=0 | - — 0, 2 1 -
Dy<0 | — — 1, 3 0 -
v - 0o | 1 - 1 0o | 1 2 3
. " A - 1,3 - 0 0, 2 2 2
(}3U“)<0 Do>0 | — 0, 2 B 0, 2
u D01=0 — 1 - 0, 2
Dg<0 | — 1 - 0, 2
_Pmin 1 2 1 2
Table 5.9
Pmin determination (n =0, m=0)
'1n=0 m#0 (lirn U:t)<o (1im U;’t)>0
t—w t—oo
v |0 0 2 1 3
A 0 2 2 | 3
n 0 0 [0,2({0(0,2(| 0
Pmin 0 2 1 2
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Table 5.10
Pmin determination (n=0; m=0)
n=0; m=0 (lim U't't) >0 (lim U't't) <0
t-—>o00 t—owo
\’ 0| - 1 2 — 0 1 -
(limU'{t)>O A 0| - 2 2 - 1 -
10 Lo -Jo2]02]—-]02]02]-
v - |10 1 - 0 - 1 2
(limU't't)<0 A - 1 1 — 0 - 2 2
0 p | -0 o - o] - 0o |o
Pmin 1 2 1 2
Table 5.11
U={(t) function, p=3; possible quantities of v, n and A.
n&m (U'=0)=>v (U=tU")=p (U"=0)=>A
n>1 DS 1<v<5 1<p<s —
m#0 IS — — <A<8
n>1 DS 1<v<5 1<p<5 1<A<L7
m=0 IS 0<v<4 — <A<L6
n= DS 1<v<s 1<u<s 1<ALT
m#0 IS — 0<u<4 <AL6
n= DS 1<v<s 1<p<s 1<ALS
m=0 IS 0<v<4 0<u<4 <A<6
n=0 DS 1<v<5 — 1<A<7
m=0 IS 0<v<4 0<p<4 <A<L6
n=0 DS 1<v<3 — 1<A<S
m=0 IS 0<v<4 0<u<4 <AZL6
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Chapter6. FUNDAMENTAL KINETIC
PARAMETERS FOR THE MULTI-SITED ENZYME
SYSTEMS

For an exhaustive specification of the single-sited enzyme systems, as has been already stated
(see chapter 2), it is necessary that only two parameters be determined (K, and Vay — if ligand is an
activator and K; and Vi, — if ligand is an inhibitor), as number of sites is a priori known and equals to
1. From this it naturally emerges that in order to fully and precisely describe the multi-sited enzyme
systems at least two kinetic parameters and the overall number of sites should be defined for each site.
Thus, for example, for the tri-sited enzyme systems 7 (6+1) parameter is to be determined. This task
cannot be practically solved, therefore, for the analysis of multi-sited enzyme systems we ought to
enter such a number of kinetic parameters which in a definite way, would fully describe the enzyme
system and could be readily defined experimentally. To this end, it is primarily necessary to determine
essential activators (n), full inhibitors (m) and, proceeding from the principle of a minimal model, the
minimal number (pmin) Of the sites to which partial effect modifiers (activators or inhibitors) are bound.
At the next stage, one should introduce such parameters which represent an “averaged” value of kinetic
parameters for all sites and characterize the summed effect of activation or inhibition.

While discussing the method for defining the number of essential activators (see chapter 4) it
has been noted that in the extremely small concentration site of V={(x) function, when r=n, R/ﬁ=f(t)
function has an asymptote U, =a_ +b,t. Its coefficients have the form:

4 = Dol IJE oofy — alBO\/E T[EU
" nagBo Vo na.oBg " Ve

>t us introduce the designations:

n n
(L) (e g Lot d(Ba)
a, Bo\ Dn Ka b, nlBy o

Plotting of n, Ka and V, parameters represents an approximation of an experimental curve to

the small concentration (correct) site

V, = _Va (62)

n
(I+K—A)
X
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In the extremely high concentrations site of V={(x) function m parameter can be determined
(see chapter 4). Transformation of variables leads to function Ju ={(x), which, given r=m, has an

asymptote - U_ =a_ +b x, whose coefficients are::

a_ = H01 B_Szapl}s—l_ap—lﬁs _Bi b = &
™ moyBs |, ma B, a7 Vo,

Let us also introduce the designations and on the basis of them plot a curve:

VI
Vo = (6.3),
X
1+—
KI
m m
1 o, ( mo B a 1 o,
where V; =[_) :_P(_ﬁj , K= ==" Bsor  %pt , (64)
am Bs HOl bm m Bs 0'p
\Y po
VY, A, ] Is V;
Jal A ‘ N
) ] O
a® ' y )
________ T — P B
V,, . S~ NODooooooooo
th
’
-4 -2
n K, m Kn ut Kbpi N2 Kr iz
v, 3 | 003 | 3 10 - _ i _ -
V, 0 - 3 10 2 0.01 2 0.01 0.01
V; 3 0.03 0 —- 2 10 2 10 0.9

n 2 —n -1 -1
Vo, Xl JH e I 1]
Kn Kpl KPZ KPIKPZ Kn Kpl Kp2)
Fig. 6.1. Vi =f(x), V. ={(x) and V3 ={(x) experimental curves and their y(r,t) and y(r,x)

transformation resultant V, =(a, +b_/x)™ and V, = (2, +bx)™ curves (V, and Vs
darkened sites represent respective V,, and Vy, functions). In graphs x is substituted by Igx
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Fig. 6.1 represents illustrative examples of random binding of ligands under rapid equilibrium
conditions. In the case of V; curve, the enzyme system possesses the sites assigned for essential
activators and full inhibitors, while it lacks the site for the partial effect modifiers. As seen from Fig.
6.1, in the :xtremely small concentration site for ligand V; curve maximally coincides with the
approximated V, function. Similarly, in the extremely high concentration site for ligand there occurs a
maximal coincidence of geometric shape of V; and approximated Vy functions. In the case of V;
function, the enzyme system has the sites assigned for full inhibitors and partial effect modifiers, the
number of sites for essential activators being n=0; for V3 curve, the enzyme system has the sites for
essential activators and partial effect modifier, while the number of sites for full inhibitors is m=0. In
this case too there occur similar coincidences.

On the strength of these numerical examples a conclusion can be drawn that Vu, Ka, n, Vi, K
and m parameters describe accurately enough V=f(x) function in the domain of low and high
concentrations.

The physical essence of V4 and V; parameters is easily comprehensible. They represent
maximal velocities for the imaginary V,={(x) and V;=f{(x) functions and give a definite idea of the
degree of activation and inhibition specific for V={(x) function. To fancy the physical significance of
Ka and K let us explore an illustrative example.

Suppose, the enzyme system is under rapid equilibrium, then the coefficients of the general

velocity equation will have the form:

S
b ] PRAE
1

Sl &1 .
o=l By=|) +y +y .y Bey=il—, po=—Ts
i=1 Ko i=1 K mi i=1 Kp' . S

J1x: [Ix:
i=1 i

p p
K.y
Z Kl 1 zk(p—l)iKpiYi

_ =1 ““pi ___i=l o = kp¥p

D ) ]

i=1

Ky Yn

If the given coefficients are integrated in 6.1 and 6.4 equalities, we obtain:

I 11 1 ykg -1 A1 &I-A vk
—_ = - —_— + + 1 ; llz# 6-5-
K, “L K; k, &K ZK ZK ZK " Yakq ©
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K, =13 Yig,-—* Zp:yik(p_l)ixpi 1 m+nﬁKj +Zp:ﬁ(1-x;)1<pi  ar=Y¥e-ni
mlio)¥s TpKp it miig¥s i=1 s TpKp
(6.6)

Let us name K, as activation constant (I/K would be an apparent averaged affinity). If we
inspect equation 6.5, we’ll see that the specific and catalytic constants are involved in it and they to a
certain extent display affinity and catalytic degree of all sites.

Thus, the presented kinetic parameters depend on the kinetic parameters of sites not only of
essential activators, but also on those of all sites (n, m and p types) and characterize the overall
activation process.

Equality 6.6 shows that the catalytic and specific constants also participate in K; formation. It
was named the inhibition constant (or imaginary averaged dissociation constant). As seen from equality
6.6, K; depends not only upon the kinetic parameters of the sites for full inhibition, but also the kinetic
parameter of all sites and specify the overall inhibition process.

The physical essence of kinetic parameters, as has been already pointed out, was determined
under rapid equilibrium conditions. In the steady-state equilibrium determination of the physical
essence of kinetic parameters is a difficult task to cope with. However, perhaps with a definite
assumption, we can say that the physical essence of kinetic parameters in the steady-state too will be
the same, but a; and ; coefficients will have other quantities.

Thus, in the site of extremely small concentrations the enzyme system is specified by the
following parameters: n, I/K4 and V4, while in the extremely large concentrations site by m, K and V1.

Naturally, the enzyme systems differ from each other in this kinetic parameter that enables their

relative specification.

As been stated earlier, in the middle concentration site for V={(x) function (x;<x<x,), the

curve’s geometrical shape is mainly determined by p parameter (x; is determined by the first tangent of

V={(x) function passing in the origin of coordinates). In this site we may have a stepwise activation or
inhibition, when in the relative site several inflexion points are consecutively arranged. In the case if
there is no need for a detailed characterization of this section we may restrict ourselves by imaginary
reaction order (w function). Fig. 6.2 presents geometrical shape of a theoretical kinetic curve for the
multi-sited enzyme system in V={(Igx) coordinate system. The stepwise activation section is distinctly

seen in the plot. To characterize this section its transformation in InU/Int coordinate system is required.
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Averaged curve

Vu(X) < {’Vﬁ=am +b_x}

10 4

Vau(x) < {¥U=2,+b,t}

IgX

Fig. 6.2. V={(x), an example of stepwise activation and its
“averaged” curve. x is substituted by Igx in graphs.

R — a regression line drawn on the points of U={(t) function
transformed on the stepwise activation [ab] section.

{V=1{(x), [a,b]} = InU={(Int) = {InU=-InVy + 0y Int } =

=>{V= Vstx(|JSt }

24

On the obtained points a regression line is drawn (Fig. 6.2 B) InU=-InV+wy Int. In V/x coordinate
system the regression line assumes V(x) =V x®* analytical shape. Fig. 6.2 shows that geometrical
shape of V(X)sXest function maximally coincides that of V={(Igx) function in the stepwise activation
site. While in the extremely small and extremely largg concentration site for ligand it maximally
coincides with geometrical shape of V={(Igx) function and of approximated V, and V,, functions.
Thus, in the case of stepwise activation or inhibition by the number of inflexion points Py, can be
defined and accordingly, the given section will be characterized by the following parameters: Py , Vit
and wg. If, however, the stepwise activation or inhibition site is to be characterized in details, then in
U={(t) coordinate system the function is approximated by a rectilinear regression. The intersection

points of the regression line on the axis of abscissa and ordinate (%( ;%, ) represent the parameters
st st

which may be specific for the present site. While the case of stepwise inhibition instead of U={(t)

transformation U= {(x) should be used.
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Fig. 6.3. A An example of V={(x) function having turning points
Vu(x) <= {3/U =a_ +b_t}Vu(x)<= {FU =a_ +b_x}
B Regression lines of InV=f(Inx) function drawn on [ab] and [bc] sections

[ab]= {Vp;=18.01, @;=0.126} and [be]= {V=19.45, @p=10.225};
InV=V_ +a,(Inx).

(for details see the text),

In the case, if in V={(x) coordinate system several turning points are arranged in succession
(Fig. 6.3), then analysis is made of the section existing between the turning points. Fig. 6.3 shows
geometrical shape of theoretical kinetic curve for the multi-sited enzyme system in V/lgx coordinate
system. Ligands bind with the enzyme system in a random way, without interaction. The curve shape
allows for setting up the number of turning points Ppi,. For each section available between the turning
points in InV;=f(Inx) coordinate system a regression line (Fig. 6.3 B) InV=InV+mylnx is drawn. Then
the entire section containing turning points would be characterized by Puin and for each site by the
combination of Vi, and @y, parameters. Thus, it can be said that o function permits to know as to with
what acceleration the enzyme reaction proceeds. However, in order to characterize in more details the

site with turning points it is primarily necessary to explore how many ligands are binding with the

enzyme system in the site between extremum points — one or more than one. To this end, on the points
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of the site in question in InV/Inx coordinate system a regression line is drawn: InV=a+blnx. If (b=w¢)
regression coefficient b<1, this means that one ligand is bound with the enzyme system, if b>1 then
several ligands are bound with the enzyme system. In the former case, when b<l, the entire site,
containing turning points, is considered. In this case, the enzyme system is linked by the ligands in
succession, which alternatively would result in a positive or negative acceleration. Characterization of
this site is possible in U={(t) coordinate system by means of rectilinear regression approximation of the
parameter (1/Ko=a/b, Vg=1/a) obtained by the intersection of regression line of the axes of abscissa and
ordinate. If b>1, then it is necessary that the origin of coordinates be transposed in the extremum point
and the section between the extremum points be studied as an independent function. In the given site
we may employ the methods of n and m determination.

The molecular mechanism for the multi-sited enzyme system may be structural in such a way
that in V={(x) coordinate system may simultaneously be encountered the turning and inflexion points.
In the given case to describe the kinetic curve of the relevant site it is better to turn to InV={(Inx)
coordinate system and to draw a regression line InV=V,+@,(Inx) in the site of tuming and inflexion

points. This function as a result of transformation in V/x coordinates, assumes the following form:
V=V,x® (Fig. 6.4). In the given case V, and o, represent those kinetic parameters by which in the

corresponding site the enzyme system may be described. Thus, for example, the regression line
InV=V,tw,(Inx) b coefficient (w,) furnishes information about the overall activation (w,>0) or

inhibition (w,<0) of the enzyme system (Fig. 6.4).

Thus, we can finally fancy the kinetic parameters which enable to characterize the enzyme
system in the site of extremely small, extremely large and medium concentrations:
L. For extremely small concentration site: n, Ka, Va
II. For extremely large concentration site: m, K, o,
III. For medium concentration site: Py, Vo, ®o
IV (for a detailed characterization of medium concentration site):
Pmin, Vst, @ (A0, stepwise activation or inhibition site)

Pmin, Vip, @ (v>1, the site of turning points)
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Fig. 6.4. V={(x) function with sites of stepwise activation (A), inhibition (I) and turning

points (T). A+T+1=P is the site of medium concentration, N of small and M of large
concentrations

€ - isthe inflexion point; @ — is the turning point
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Chapter7. CLASSIFICATION OF MODIFIERS FOR
MULTI-SITED ENZYME SYSTEM

7.1. The multi-sited modifying enzyme system with one substrate site

For the multi-sited systems a relatively simple example is a single-substrate system with

multiple sites of modifiers. Naturally, in this case the enzyme velocity equation V={(x, y) (x being
substrate and y modifier's concentrations) is not in need of power transformation and even in

inverse values in respect to substrate gives a rectilinear dependence (U={(t), U=1.V, t=1/x=const.).

The enzyme system of this kind can be schematically expressed in the following way::

A

D1 l)2
0- —0- gE=v+A+p, o=v+A,
s=ntp+m, h=n+
xKi | b P
VoI K. Ka D1=Zﬁiy1 D, =2 o,y
v J -n — oy i=0 i=0
..................... 5
B YA, '
N1=ZK+i iy’
XK+°- . '=v
G~ |e - k d [ " P m i
1=V 1=n
€ x — substrate concentration
_s— y — modifier's concentration

where K, ....., Kqip are catalytic, while K; and K ; are respectively substrate dissociation constants,

while v, o, €, n, p, s are the numbers of ligand binding sites. Suppose, there is no intcraction

between the substrate and modifier sites and the substrate imaginary dissociation constant depends

upon the number of only bound modifier. At the same time the interaction between the modifiers’

sites is permissible (y — interaction coefficient). Then under the rapid equilibrium we’ll have:

2 i < 2 el e KoK el ¢ K €
Dlzz(:)ﬂiy =1+ZKL+ Ey Yy L A4 y Y24 - y

2 > (7.1)
B HK)'i R HKyi o (HKyi)Ye
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Dy=Faiy =1+ Xt =Y E (72)
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Whereas without the interaction between the substrate and modifiers’ sites we'll have: a=a'=a"’

and B=P’' as a result of which we’ll have:

[ . [+ . n+p .
N, =EK+iﬁiyl 5 N; =ZK-i°‘iY' ; N3 = _Zki("i)’l (73)
i=v i=v i=n
Under rapid equilibrium, velocity of the enzyme system of this lay-out will be expressed:
N7 K K .
_Nox gD DR e Kk =BS ad v (74)
D,K, +D,x N; N3 x

Suppose, modifiers (y) compared to substrate (x), represent themselves molecules of smaller

size and their binding with the enzyme system is realized more rapidly than of substrate, then in the

steady-state the velocity equation can be solved using Cha method, in terms of which binding of

modifiers is viewed under rapid equilibrium and of substrate, in the steady-state. In the given case,
the rate equation in the reversed coordinate system will have the form:

D2, DN N)(1)
N, N,N§

(7.3)
x

In the end, the rate equation in the steady-state equilibrium in a complete form will look like:

& i A i P n i v S i 2 ' i
(Zﬂiylj[yvZK—(i+v)aEi+v)yl + yu_zok(i+n)a(i+n)y :l"'xy (Zaiy )[Z(:)K(iw)ﬂ(iw)y':’
i=0 i=0 i=

i=0 i=

A N p .
xy'*™" (Zo K+(i+v)BEi+v) y' J’:Z(; k(i+n)a(i+n) y }
1= 1=

U=

(16)

On the strength of interrelationship of v and n parameters, by means of formula 7.6, the least
power of denominator can be defined. If v<n, the least power of denominator would be n. In the
case when n<v, both the nominator and denominator of the fraction are cancelled by the least power
having term (y"), as a result, in the double reversed coordinate system, in the rate equation (7.6) the
least power term of denominator would be y'. The method for determination of the number of
essential activators will allow to set up just this degree parameter, that is not the case in real
situation. In reality, a substrate is linked with an enzyme after being bound with v modifiers and for
further catalysis the necessary condition is release from the enzyme system of (v-n) modifiers.
Therefore, v must be viewed as the number of a pseudo essential activator. When v<n, fraction
cancels by the least power y' term and y" remains in denominator, the method defining the number
of essential activators would enable to determine the real number of essential activators. In the

present case, after occupation of v site, the enzyme system is linked with a substrate and thence for
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a catalytically active form to be obtained the necessary condition would be binding again of (n-v)
single modifier (in the case when n>v).

Similar situation holds for full inhibitors. As a result of division nominator and

#*M is obtained in the denominator. Thus,

denominator in 7.6 equation by y**® term power term 1/ 'y
if m>p — the method of defining the number of full inhibitors (see Chapter 4) enables to determine
the real number of full inhibitors (m). In the opposite case (m<u) the pseudonumber (u) is
determined.

Under the steady-state equilibrium U={(1/x) function is rectilinear (7.5), while value of its
slope (SI) and of the point of intersection of ordinate (Int) and abscissa (tg) depends upon modifiers’
concentration (y). Determination of the enzyme system molecular mechanism and the type of a
modifier requires a detailed analysis of these dependencies and determination of their limited
values. These dependencies will give the different values (for more details see appendix 7.1).

In terms of the method for the analysis of geometrical shape of curves it is necessary to

define the sign of these values and the limited quantities of their derivatives, of turning points and
the first derivative. In the tables given below limited values and their dependency upon v, n, o, h, p
and m parameters are shown.
With infinitely small value of argument, slope of the function and its derivative, proceeding from
the interdependence of n and v parameters, assume various values. While at infinitely large values
of argument, slope and the limit of its derivative depend upon p, 6 and h parameters. With infinitely
small value of argument, the values of intersection on the abscissa (to) and its derivative, as is the
case with slope of the function, depend upon n and v parameters. While with infinitely large values
of argument, ordinate intersection and its derivative, depending upon y, ¢ and h parameters, take on
different value.

It should be noted that based on curve shape analysis of Int={(y), SI={(y) and to={(y), with
fixed y=const, it is possible to determine the position of intersection points of U= {(t)=(Int)+(SI)t
straight lines.

Let us consider the examples of the enzyme system arranged in this way. This will enable to
establish the interrelationship on the one hand between the molecular mechanism and on the other
hand, between geometrical shape of Int={(y), SI={(y) and t;={(y) functions and the position of
intersection points of U={(t) straight line.

Further on, finite positive number (0<w<ow) will be designated by w.
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Table 7.1

The shape of Int={(y), SI={ (¥) and t,={ (y) function (w — positive finite number)

Shape of Int {(y) function

lim(Int)= | [0#0] = +o0 lim (Int) = [m#0] = +eo
y—0 [n=0] = +w ye [m=0] = +w
lim(Int), = | [00] = —° lim (Int)y = | [m#0] = 4=
y—0 [n=0] =>tw yoe o [m=0] =>+w
Shape of SI=f(y) function
[v<n] =+
lim@h= |[v>n] =+o lim (ST) = [u£0] or [p=0, >h] = +w
—0 a0
[v=n=0] = +w
[v<n] = -0

_ ' ) [pu#0] or [u=0, c>h] = +o
lim@SY, = [[vn] = - ‘= ’
2Dy [v=n3t0] = —© Jimn (SD)y [1=0, o<h] = -0

[v=n=0] = tw [1=0, o=h] =0
Shape of t,=f(y) function
[v<n] = -w lim y™*
) fv<n] = -w ) e
lim(to)= | [y=n] = -w lim(t,) = [v=n] = -w lim y*°
y [v>n] - 0 y—® y—>o0
[v>n] = -w lim y*°
y—>
[v<n] = tw [v<nJ=> wlu—m] lim y™
[v=n] = tw . .

. ' f (m=p) => 0
llm(to)y = [V>n] =W, lim (t())’y = 1 (rl.:‘l IJ')I‘!‘l—l.l---l
y—0 (V-l‘l=1) y—®© [v=n]:> tw- lim Yy

[v>n] =0, y—mi s—e-1
(vn>1) [v>n]= w[s—s] lim y ;
y—ro

if (s=¢) >0
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Pure specific modifier

(S1)y < 0— activator ; (S1)y > 0 — inhibitor.

Necessary condition

T W0

Z

Int=1(1—; (Int)'y =0;

% ki=k, 0<n<h /
1 , (S /
© e Y ey
8D Sh (U/y)/Ay)
D t
01 Int S 2 y
| ' I— \
- y
n . y
K_,+k,)[B, B >
Sl=(“—“ O T 4B |5 (SD), <0;(SD? >0
an+nI3n |:yn nt anl ( )y ( )y Al, Dl Dz ki=k
K nBy y" : > >
ty=— s (). <0 (1) =0
0 (K_n+kn)(ﬁo+---+Bny“) (fo)y (fo)y Al and Al enzyme
K (B, +By+-+B.y" )+ n K systems have the curves
()= Keals Ay Vb Kotk || T S and
B, Xy +n to={(y) of identical shape.
Dy
! 2 0 Int S
K
(K—0+k0)r £ ' > >
si=2ellg, iy ; s, =0; 1,20
, 00 A2’ (D, D, | k=
l'l_r)ré(Sl)y =+W; J_HE(SI)Y =+400; R
ty=— Ko 1 - ;(tO)'yZO; A2 and A2 enzyme
(K—o+ko)(ﬂo+"'+ﬁn}’) systems have the curves
(o) = (K_g +ko)+ B +Bmost -+ + Bot™ - K_oBoxt™ In={(y), SI=f(y) and
koK _oPoxt™ to={(y) of identical shape.
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D1=Po R In S t y
C)‘—' v p———
Dz ki=k
y - y
SD):
Sl=—1 4 Koo =; (SD), <0; t0=——1 s (to)y = ( )Y2<o
Ky KK,olotg +oyy+-ta,y") k(SD) k(S1)
D,
!- 4 0 Int
v
y
€ ky
Kk, B" 4By |5 (S 20 -
kJK.oBy A3 |Dy|_ ID:k=k
4‘"’__'
t —_ K+VB yv
0=
K . k) ([3 +o 4B y" ) A3 and AY enzyme
) ' . systems have the curves
lim(ty), =~0; lim(to),, =+0; Int=f(y), SI=f() snd
to={(y) of identical shape.
U(y) - (K—v +kv )O'vﬂo +B1 +-'-+G.VB‘2,K+nyV +"'+Bsy£
k KTV VB xy
Pure catalytic modifier
B (Int)y <0— activator; (Int), >0— inhibitor

Sufficient condition YU ou

b

K—h +kp /
(S1), =0; Sl=—"—F
K.k, %

(1/y)/i(y)

\
N\
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Bl -

Di=Bo D ‘/

D, D,
0 |« 0o [—*>
B1'
ki=kp
S

Bl and Bl' enzyme
systems have the curves

Int=f(y), SI=f(y) and
to={(y) of identical shape

B2 |

to y

B3 |-

TV y




Mixed modifiers with constant affinity
(S1)y <0- activator; (Sl);, >0 inhibitor

U
Necessary condition: (t,)y =0; to=—

K+x
k+K

~X

C1

Sufficient condition:

D=D2=Dy, oi=B; .

Ny =K,x-No. N3=K_,-Ny. Nj=k:Ng
€=s, v=n, 6=h

D, —Zaly ;N —Za v U={(y)-o(x);

i=n
.

1+

U(X’Y)Z[ :‘D+°‘1Y+--°+ot$ys ‘( k+K_x)
ky (a0+aly+...+apyp)k XK+X

S 4.l (
U(x,t) =|: :'ot -; tog t+ag + k+K-x)
kt (O‘ot +---+as_lt+as)J\ XK, x

Uy)iiy)
D D
00 (;. Int SI t?_ y
EIT \/
i L y Y
£ s
Do Dy

Int= L&‘H"IY"' +‘1e)’)

(a +-- +ahyh‘“)y
Sl=(0.o+aly+---+aey XK +k )

; (Inty, >0

»k

Cl and CI'

s (S >0,

enzyme

systems have the curves
kol +op y+-+ogy In={(y), Skf(y) and

to={(y) of identical shape
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C2

D1 DZ
0
€ |&— s >

=

14
(10 +a1y+"‘+(lay

)

ka,ys

’

(Int), <0 ; (Int), 20;

Sl=

(oto+on1y+---+0L,,:),"’:XK_s +kp).

k, oy’

(Sl), <0; (SI), 20;

_ (e, +x_ ]+ K+sx)(ao +a1y+---+aey°).

U(y)

kSK+S (an Tt ahyp )xyn

b

D, D,
C3

v

Int

y y

to

/=

-

Qg +0, Y+ -+ 0,y

)

koo,

U(y)

(Int), >20; (Int);, <0;
[(ko + K—s)+K+sx]

2

(ao +0L1y+---+0LEy';XK_S +kp).

kO(X'OI(+0

1y, 20; (SLY, <0

o, +--+a,t

K, kox

t"‘(ah+---+anth‘“);

3

Mixed action modifiers
D 1. Activator with decreasing affinity, (t,), 203 (SI); <0.= DA

2 Inhibitor with decreasing affinity, (t,), 20; (S, >0.=>DA
3. Activator with increasing affinity, (ty)}, <0; (S, <0.=> 1A
4. Inhibitor with increasing affinity, (ty), <0; (SD)y >0.=>1IA

Necessary condition:

sign(Int), =sign(SDy; €

/L

U

/
e

©
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1 /_DA
I ) -+< 1A
y N
K, y |
€ < S |—p
t=——| 204 to,y* |; lim(ing=+o; lim(laf)=- ; (Iat), <O
ka | y® y=0 a s

Sl: (Bo+..-+BEy XK_OG,O +---+[K_S+k5k‘sy ), 11r%(Sl)=+00, lim(SI)=+W; (Sl)ly SO
y— y®

ksa'sys (K+0B0 +'"+K+£B£ye)
(ao +---+cxsysXK+OB0 +"'+K+EBEY°)
(BO +---+BEyEXK_00.0 +'"+[K—s +ks]asy )

sign(t, )’y

y_’g(to) =

<0=DA; sign(ty), 20> 1A.

b

)_ _K+e .
k. +K

’
—»a0
y -

-0 s

1=Po D,
D2 | "I\
k,
| | S t y t y
R . |
oy +--+0, y
Int =—9 2l . (Int), < Int)!, >
oy (Int), (Int)y
1 K_,a 7 I y"
Sl = 070 1k ; S < Sh! >0
an+00.n [ yn na‘nj ( )y ( )y

t __(a0.+---+any")K+OBQ .

lim(ty), >0
y—

ox
4’ 1/x

= s lim(ty)!, <0;
’ f’olK-oao +kg0,y" y——)O( o)y
Int & Sl
D, . D,
0 *—o0 |=—> -
ke
(Int)y < 0 (Sl)y <0
ki Int & Sl
p [«=p |— /
Kk; # const ko

(Int), >0 (Sl)y s C——— >

—— >
D3a

/'_
\_

D3b
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(with concentration-dependent activation and inhibition sites)

Modifier with a dual effect

Ps

Necessary condition

YU /YU

sign(Int)'y —sign(Sl)'y; /
/ sign(S1), =sign(t,);.-
t
D, (1/y)I(y)
0
t
Int S1 - y
D, ‘
€ «<— n p—> /
y y
S D, D,
Int = ” (ocE +---+asys_e); (Int), >0; (Int)j >0. D1’ < 1y Kn
EaE hna
< -
k
Slz(K_E+kg)[B_g+...+h+Bejl; (S, <0; (S}, 20. i
K. keBe |y y

tO - K+5Bg (ae +-..+asys_e)
ey e

; (tg)y <05 (tg)} <0.

D1 and D1 enzyme
systems have the
curves Int={(y),

SI={(y) and ty=f(y) of

E1 [*F

Ka
n N |y
U
/J 1/x
/ (S, =0

In IT quadrant (t*<0, U*>0) there are

no intersection points

identical shape.

Int \ S1 W t0| y
l &.’.....‘.an ;
ko, | y°

Sl = (BO +“'+BnynXK_0ao +knan).
K oknasBo ’
_ (Oto+---+any“)l(+0[30

Int=

ty = ’
(K_an +knany"XﬁO +---+Bny“)
Sign(t*) = - sign(Int)y, sign(U") = sign(ty)y
sign(S1), ’ sign(Sl),
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D, D, Int SI b y
0 0 |—
E2 »
y y
p «<=p
1

U Int = [a0+---+anyp];

koo

Sl = (Bo +-+B,y* JK o,y +ko°‘o);

A 1/x K.pkottoBpy”
A e
y

_(K_papyp +k0a0X}30 +---+prp)

si n(t*)———y' sign( ~)=M
In II quadrant (t*<0, U*>0) there & ~ sign8D), & sign(S1);, '

are no intersection points

Thus, from the examples examined above it is clear that differing from each other are five
diverse classes of modifiers: 1) Pure specific modifier; 2) Pure catalytic one; 3) Mixed type with
constant affinity; 4) Mixed type with variable affinity; 5) Modifier with dual effect. Each type is
characterized by distinct shapes for Int={(y), SI={ (y) and t,=f (y) functions that enables plotting of
graphs in U={(t) coordinate system characteristic of each type of modifier and delineate them

from each other. Thus, for instance, for pure specific modifiers it is necessary that (Int)'y =0

condition be fulfilled, on the basis of which in U={(t) coordinate system at different concentrations
of a modifier the curves intersect ecach other on the ordinate axis. In the case of a pure catalytic

modifier condition (SI); =0 is fulfilled, giving thus in U={(t) coordinate system the parallel to
each other lines. With a constant affinity mixed modifier, (t,), =0 (t,), as a result, the graphs

plotted in U=f(t) coordinate system, in the presence of varying concentration of the modifier,
intersect on the abscissa. In the case of mixed modifier with variable affinity the condition
sign(Int)|, =sign(Sl), . and s=¢ is necessarily fulfilled, resulting in the intersection in U=f(t)
coordinate system of circles in the second and third quadrants. As to the modifiers with a dual

effect, it is necessary that sign(Int)}, = sign(S1)} and sign(Sh), = sign(t,), condition be fulfilled, as

a result, in U={(t) coordinate system the circles intersect in the first or third quadrant. So, it is



94
evident that during the influence exerted by different types of modifier on the enzyme system a
graphical drawing specific for each type is obtained in U=f(t) coordinate system, which, relying on

experimental evidence, enables to formulate the molecular mechanism of the action of a modifier.

7.2. Stepwise catalytic single-sited substrate and multi-sited modifier enzyme system

The transport ATPases have a crucial role in the cell functioning. From this viewpoint P
type ATPases, having the phosphorylated intermediate condition (P-intermediate), are remarkable.
The catalysis realized by them takes two steps: with phosphorylation and dephosphorylation.

E+ATPOGEATP—>EP+ADP—E+P;,
Each step of P types ATPase reaction is, as a rule, activated and inhibited by modifiers

(ions). In a general way, the reaction of this kind has been schematically presented in the below

diagram:
Do Dy Dg g=v+A+p, o=v+A, s=nt+p+m, h=n+p,
0— 0 0 OSVSGESS, O<y<n<r, cE)SnSth.
xKv Kgn Do =2Biy's No=2XK,Biy';
V--.1.]{_-V. k Ay n--————> i=0 i=v
v T . o .
x Dy=238y'; Nj=2K_3y';
ch s a0 ® s 1=0 i=V
O--fe > n N”—'Tksﬂi'
Ks kan h--4+——> AT ; A0y 3
th s . h_x .
£~ c Dg = Z“iyl ; Np= ZkBia;'yl
S i=0 i=n
Where Ka,...., K3 are catalytic, while Ky and K, are respectively substrate (x) dissociation

constants, as to v, o, g, X ,M, T, 1, p and s, they are numbers of ligand (modifier) binding sites.
Suppose that there is no interaction between the substrate and modifier (y) sites and the substrate
imaginary dissociation constant depends only upon the number of bound modifiers, while the

interaction between modifying sites is permissible (y=1). Then, under rapid equilibrium we’ll have:

-1 [

[ . E y e—1 y2 € Vi ya [ y
D0=ZBiy =1+.ZK 2 Z KJ- e =2 ZyiKyi+£—
[Ixy ™ [Tviky

i i

D, =.Z:8iyi :1+Z y. +-- 4 Y ZyiKyi +Ty‘ (7.8)
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S LNy Y y*
DB =Zaiyl:1+ZK .+"’+ S Z‘YiKyi'l'-s———
—

=" HKyi i=1 HYiKyi
i i

In Dy, Da and Dg equations Ky; constants have the same physical and diverse numerical

quantities, and with no interaction between the substrate and modifier sites we’ll have: ao=a'=a"

8=3'=8" and B =p', resulting in

i=y i=n

N, = iKnBiyi H A= 21{450’i ;  Ni =ikAi8i‘yi ; Nj =ikmaiyi (79)
I;vmodiﬁers, compare(li to substrate, represent the molecules smaller in size and their
binding with the enzyme system occurs more rapidly, then under the steady-state equilibrium the
velocity equation may be worked with Cha method, according to which binding of modifiers is
viewed as occurring under the rapid equilibrium and of substrate, in the steady-state. In the given

case, the velocity equation in the reversed coordinate system will assume the following form:

D, Dnj+ [N:\ +N:\]'D0DB l

U=a+bt=(Int)+(Sht=| =2+
N, N N,N"N%  x

2

where U=1/V, t=1/x; (Int)=a= (D—”‘“‘+b [Ny + N3 |- DDy . (710

] (S)=b= P
N% N& NN N4

a__ () [DANR+DpNAINy, _ Ny D, Na, N
b () [N,+N, DD Do\NA+N3 ADs Dg)

where ty =—

Let us examine a few examples of the enzyme system organized in this way.

A Pure specific modifier Necessary condition: (Int)y, =0

N =kaDy;
Ng =kgDgp;

Do |....|Da|...| Dg SI=L(1+E,A]&;
—  }— kg Na /N %—-——
1/x

ka ke 1 1)Ng(1 D,
to =| —4— + .
kai=const ka kg /Dglks N)

kg; =const It is possible Dp=Dp , Da#Ds.

A 4
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Pure catalytic modifier

Necessary condition: (SI)y =0

K ok aokno
y Int = +(50+“'+5my ); (Int), 20; (Int)} >0;
! A0 kg
D0=B0 DA DB=8I'I to __ (80 + o4 Smym )K—O {kBo N kAOSO J :
0 ‘ ka :kB (K—O +kA0) (80 +'”+6mym)
(to)y <05 (tp)} <O.
n
C Mixed action modifier constant affinity Neces(sta r;" cgr:)dltlon:
0y —
v=x=n, 6=n=h, £=1=$§
kai=ka; kpi=ks, Ki=K_, K+i=K..
| a— > —_— s . h .
Do |...! Da| ..{ Dg Dy=D, =Dg=D; D=) Biy'; N=D o;y'
— > L5 i=0 i=n
ka ke | No=KiN; N’y =K_N; N% =k, N; Ny =kgN;
U U= ._1_. + L + K_—-*-k_A_ 2
ky, kp) k,kgK, |N
1/x
Mixed type modifier
D 1. Activator with decreasing affinity: (t¢)y 20, (S1)' <0.
Us 2. Inhibitor with decreasing affinity: (tg)y 20, (SI)' <0.
/ 3. Activator with increasing affinity: (to)} <0, (S1)’<0.
A U*< Oﬁ‘ 4. Inhibitor with increasing affinity: (to)y <0, (SD'>0.
1/x
Z7 P 1 (6n++5. y™
- u >0 Int= +(0 -4 ); (Int)y <0; (Int)§, >0;
Do=fo Da kg kgod,y”
0 1 I(+080 ”
Sl=k 1+ —1; (SDy <0; (S >0;
il B AT 0)= —K.K.
> toz_(50+"'+8nyn)'kB{1K+o y— +0/ K o.
Necessary condition: (K 080 +Kk A08,y" ) (y—>90)=> —Kiokpn/Kan
sign(Int)y =sign(Sl)y (o), 20=>DA, (U* <0 ); (ty), <O=>1A, (U >0).
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Modifier with Necessary condition:
E a dual effect sign(Int), =—sign(Sl),; sign(SD), =sign(ty)’.
Dy Dgp=0, Dy Kan Kgn U
n |<n |[——>0—> n |l=—=m 1—>h +——
ka ks ¢
DA DA DB ”
1/x
S S )
Int ( - s)
Soy™ +---+8
_/ Int = ! L 00Y s¥ ; (Int)y 20 ; (Int)j >0
an kAnsnyn
} +-+Boy" JIK_, +k
s1 y 51=(‘3° B’;y & An); D, <0; (S} >0
KinBny Kankpy
- tO = — 1 + (Soyn +“'+65ys) I(+nBr1yn kAnan .
to y Kpn kan8sY" Bo+-+Bay") (Ko +kaq)
pd y , ,
; (tO)ySO;(tO)y<0'

Modifier with
a dual effect

El

P-type transport.ATPase model
(phosphorylated intermediate)

D0 DA DB
an '
e e @ ;
1= > 0 Yo y
% U
| (Int)}, =0 % (Int)3, =0
/
/ | Ux / 1/x

(to)y <0
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Int=80 +ee+ 8 y" L %o +otay" . (Int), > 0.
KpnS,y" Kpaag
Sl = (J30 +'“+ﬁnyn) lK—o5o ++(K g +kAn)8nyn_|(a0 +"‘+anyn); SIy, <0;
K+n(B0 +"'+|3nyn) Kan8sy" kpog Y
tg = [50 * "'+5nyn] [ KpaBay” | Kmo%o ;
lK-o5o +-+(K_, +kAn)6ny“J (87, +---+8ny“) (ao +---+any")
(Y>y0)=(tg)y <0, (y=Yo)=>(tg)y >0, (y<yo)=(to)y==%w.

Thus, the examples examined above makes it imminent that in the case of stepwise
catalysis too the same pattern is seen as has been dealt with in Chapter 7.1. Five diverse classes are
distinguished of modifiers, which in U={(t) coordinate system yield the graphical drawing similar
to that considered in the previous chapter. The difference is seen in the case of dual-effect

modifiers, which additionally gives intercepts in the second quadrant of U={(t) coordinate system.

7.3. General classification of the multi-sited enzyme
system modifiers

Full kinetic estimation of single-sited enzyme systems, as has been shown in Chapter 2, is
determined only by two kinetic parameters (K and V. in the case of an activator and Kjand Vax
in the case of an inhibitor, that furnishes information about the catalytic and specific constants). The
third parameter, the number of sites is a priori known and equals to 1. Proceeding from this, at one
glance, it is logical that for the full kinetic estimation of the multi-sited enzyme systems it is
required that the number of modifier binding sites be defined and each site be characterized by two
kinetic parameters. As has been demonstrated earlier, the multi-sited enzyme systems are affected
by different types of modifiers: essential activators, full inhibitors and partial-effect modifiers. That
is, for full characteristic of the multi-sited enzyme systems rather a great number of kinetic
parameters are required and to characterize an enzyme by these parameters is a practically
unsolvable task and is devoid of any sense. Therefore, one needs to formulate such principles of
modifiers’ classification that would facilitate sufficiently full kinetic analysis of the muiti-sited
enzyme systems. As a result of analysis of the examples dealt with in the previous sections, it is
possible to find the way out and to relate the modifiers’ classification principles with the alteration
of the position of intercepts at different concentrations of a m modifier (coordinates: U*, t*) and
inflexion (SI) and intersection points with the coordinate axes (intersection point Int with the
ordinate axis or t, with the axis of abscissa). In these examples, the enzyme reaction rate vs.
substrate concentration, in inverse values, is circular and classification according to the location of

intercepts at different concentrations of a modifier is easy, this being rather difficult for the multi-
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sited enzyme systems, the more so when we deal with the experimental points. In this case, the
dependency is frequently curvilinear and it is rather complex to determine, on the strength of
experimental data, the intersection points of curves. As regards the classification, it requires a
simple procedure.

In Chapter 6 the fundamental kinetic parameters were considered and on V={(x) graph
three of them were singled out: small, large and medium concentration sites. The first two sites are
described, respectively, in terms of ‘\‘/ﬁ=f(1/x) and YU =f{(x) functions, representing circles. In
order to describe the medium concentration site, one may use InV={(Inx) function, averaging of
which occurs by means of a regression line and is expressed in the following way: InV =a+blnx,
where a may be fancied as InV .y, while b represents averaged @ function. An alternate method can
be also applied to characterize InV=a+blnx function for the medium concentrations’ site, that
is, averaging of U={(t) function with rectilinear regression, as a result of which we may obtain an
ascending (b>0), descending (b<0) or a horizontal circle. (In the case of increasing curve, the
function is approximated by means of a rectilinear regression in U={(t) coordinate system, while in
decreasing case we can employ U={(x) transformation). If in the middle of V={(t) function several
turning points are arranged in succession, then analysis may be made of the sections between the
turning points and averaging of these sections be carried out.

Thus, as a result of power transformation of V={(y) function for each site circles are
obtained. This would, perhaps, facilitate relatively the classification of modifiers for the multi-sited
enzyme systems, according to the intercepts obtained in the conditions of various concentrations of
modifiers, this, in turn, being associated with the alteration of catalytic and specific constants in the
velocity equation.

Let us examine the multi-sited enzyme system, whose vélocity is dependent on two
ligands, V={(x, y). Assume that y is considered as a modifier in respect with x, then in [y]=const
case, U={(x) function may be grouped into three classes according to small, large and medium [x]
concentrations and make their kinetic description by means of the relevant functions, (U=1/V):

1. Small concentrations’ site, N type;

U=f(t) = U={(t) = YU =a, +b,(1/x)=nt)+(SH(1/x);

2. Large concentrations’ site, M type;

Un=f(x) = Un={(x) = HU=a,, +b,(x)=(nt), + (S, (x);

3. Medium concentrations’ site, P type; V=f(x)= V= ay+by(x)

31 (b;20) Up={(t) = U=ap +by(1/x)=(Int), +(S1), (1/x)

3.2 (0p<0) Up=f(x) = U=a,+bp(x)=(Int), +(SI), (x)
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Therefore, based on geometrical shape of Int={(y), SI={ (y) vs. t={ (y), it is possible to
classify y modifier and single out respective subgroups.

Thus, at various concentrations of modifiers (y), according to the above listed intercepts’
coordinates (U*, t*), three major groups (N, M and P types) of modifiers can be distinguished and

the respective to each one subgroups. The characteristic and to be explored circles of these groups

are: Up={(t), Un=f(x) and U= f(x).

A N, M and P type pure specific modifiers
Necessary condition: (Int)}, =0 Us=1{(t)
(SDy <0 = agqtivatori Un={(x)
(SD), >0 = inhibitori Up={(t) or Up={(x)
(SD, =0 = #{(y) . US0,t"=0.

A subgroup comprises the modifiers whose action results in interscction of relevant

circular functions on the ordinate axis ((U*>0, t*=0)), i.e. by the effect of a modifier changes
slope (if a modifier is an activator (Sl)'y <0, while if an inhibitor — (Sl)'y >0). and don’t changes
ordinate intersection point — (Int)'y=0. And this, as been already stated, means that the modifier
acts on the specific constant and has no effect on the catalytic constant. Therefore, such modifiers

have been attributed by us to the subgroup of pure specific modifiers.

B N, M and P type pure catalytic modifiers
Necessary condition: ~ (SI)j, =0 Un={(t)
(Int)’y<0 = activator Un={(x)
(Int)’y>0 = inhibitor i Up={(t) or Up={(x)
(Int)’y=0 = = f(y) U*~00, t*~00

B subgroup comprises the modifiers whose different concentrations corresponding power
circular functions are parallel to each other, i.e. do not change slope, (S)y =0 and alter the
intersection point with ordinate axis (for activators (Int), <0 and for inhibitors (Int), >0 ), that

means that the modifier changes the catalytic constant and has no effect on the specific constant.
From this it follows that the modifiers of this subgroup have been attributed by us to the pure

catalytic ones.
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C and D subgroups unite the modifiers under the influence of which alters the inclination

of the respective circular functions (if a modifier is an activator (SD)}, <0 and if an inhibitor —
(SD), > 0), as well as changes the ordinate axis intersection point (for activators (Int), <0, and for
inhibitors — (Int), >0 , i.e. the modifiers of this subgroup affect both the specific and catalytic

constants, that’s why we have attributed them to the mixed modifiers. In this subgroup, in tun,

three cases are distinguished:

C D N, M and P type mixed-effect modifiers
b
Necessary condition: sign(Int)|, =sign(SI)}, 4
D1. Activator with decreasing affinity
(t)’y20, (SI)’y<0 //
D2. Inhibitor with decreasing affinity
(t)'y20, (SD’y>0 / oDI,D4 |
C1. Activator with constant affinity / C
(to)y =05 (8D <0. »C1,C2
C2. Inhibitor with constant affinity / R ’
(to)y =0; (SDy >0. 77 " D2,D3
D3. Activator with increasing affinity
(to), <0; (SI),, <0. Us=£(t), Un=£00), Up={(t) an Up={(x)
D4 Inhibitor with increasing affinity t'<0; U0, U™=0, U'<0

(to)), <0; (S}, >0.

D2, D3 — when intersection of circles occurs in the second quadrant of the coordinate
system (U*>0), t*<0), the mixed type modifiers are predominantly specific. In this case, if the

modifier is an activator, then by its action the intersection point with the axis of abscissa diminishes

((ty)y <0 ) and the mixed type modifier will be preferentially specific with increasing affinity, and
if a modifier is an inhibitor, then the intersection point with abscissa increases ((t,), >0 and the

mixed type modifier will be preferentially specific, with increasing affinity.
E subgroup unites the modifiers, under the action of which the intersection of the respective circular

functions occurs in the first quadrant of the coordinate system (U*>0, t*>0), i.e. at this time, if the

inclination decreases ((S1)}, < 0), the intersection point with the ordinate axis increases ((Int), >0)
and vice versa, if inclination increases ((SI)}, > 0), the intersection point with the ordinate decreases

((Int)|, <0). We have attributed such modifiers to the dual-effect ones.
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E N, M and P type dual-effect modifiers

(with concentration-dependent activation and inhibition sites)

Necessary condition: —sign(Int), =sign(Sl)}; 4

1. With an increase in modifier’s concentration
activation passes into inhibition

2. With an increase in modifier’s concentration 0O
inhibition passes into activation —

Us={(), Un={(x), Up={(t) an Up={(x)

U0, t" > 0.

In the multi-sited enzyme system, when p>1, there may create a situation when the sites
assigned for the partial effect modifiers would have distinctly greater effect on the enzyme velocity
than those assigned for essential activators or full inhibition (let us designate this enzyme feature by
a symbol PP). The situation of this kind may exist without modifiers and may also be created, or, on

the contrary, be eliminated, as a result of binding of a modifier. the necessary condition for this

situation to exist is:

Dm=(%—ﬂJ<o o6 H(,l:(%—?"—"}o 7. 1)

s 'ap

™—+o qT

As a result of which we’ll have: lim do <0 and (Int)y<0 or lim 3—033 0 and (Int),<O0.
. T —m T

This results in substantial changes in the geometrical shape of some important functions (Fig. 7.1.).

/ 4 Vs
A Dmy_/' Ha>0 |
7 s ‘ C s
v s 2w
s

R 7z 7
e
s/ iDm<0 /'//' iHm<0 |

-
>

»

i
»

W= [ yu-tam wW-tax | ¥O-tx)

Fig. 7.1. Importance of signy; and signHp, for the formation of geometrical shape of
Up={(t) and U= {(x) functions




Bearing in mind the above-said, two new subgroups can be formed:
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1) The enzyme mechanism operates by a priority of P-type sites and modifiers cannot alter

this situation (PP).

2) Priority of P-type sites in the enzyme mechanism is regulated by modifiers (RP).

PP

P-type sites’ priority nonregulating modifiers

in N, M and P type sited enzyme system

Location of intersection point

Type Necessary condition Ut Modifiers
9
U'<o0 (SD)y <0 Activator
Int)!, =0
PPA (Int)y # =0 (S1), >0 Inhibitor
SIY =0 U'> (Int), <0- Activator
PPB (b = t > (Int)}, > 0 - Inhibitor
) . , U'<o0 (SD)y <0- Activator
Int),, = Si
PPD | signint)y =sign(Shy 2 <0 (S1)}, > 0— Inhibitor
sign(Int)}, =—sign(S)}, é U'=0 (SDy <0—» Activator
(tg)y =0 // t'>0 (S1)y > 0— Inhibitor
PPE
sign(Int)}, = —sign(S)|, U'<0 (S1y <0— Activator
sign(S1), =sign(to), >0 (8D, > 0- Inhibitor

In these subgroups united are the modifiers under the influence of which intersection of

circles occurs in the fourth quadrant of the coordinate system (U*<0, t*>0), or on the abscissa — by

the coordinates (U*=0, t*>0), or on the ordinate axis — by coordinates (U*<0, t*=0). Such a position

of intercepts is possible only in the case of multi-sited enzyme systems and depends on the

parameters stipulated by multisitedness. Therefore, the modifiers of these subgroups can be referred

to as the modifiers with multisitedness effect. It must be noted that in a similar situation the

condition Dg,=0 or Hy;=0 is fulfilled.

The subgroup with adjustable P-type site priority varies from the first subgroup in that one

of the circles does not cross the fourth quadrant and respectively, the intersection points therein are

not located in the fourth quadrant, while another crossing circle will by all means pass the fourth

quadrant.
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P-type sites’ priority regulating modifiers in the enzyme system

with N, M and P-type sites

T Necessary Location of intersection point Modifiers’
ype condition U" t‘ characteristics
' _ U*> o | (Int)’y<0 — activator,
BRP (SD; =0 t* — oo | Stimulates primal
activity of partial-effect
sites; (0—P)
. . ' U'<0 , L
DRP | sign(Int), =sign(Sl); . Int)’y>0 - inhibitor,
t<0 inhibits primal activity
of partial-effect sites;
(P—0)
ERP sign(Int), =—sign(SL), U*>0
t'>0
Appendix 7.1
Int= D2 = o, +aly+“.+as—lys_l +asys (7.7)
N; yn (kna‘o +kn+1an+ly+"'+kn+p0’n+pyn+P)
Sl - (N'Z + N'Z' )Dl - yV [K—vavﬂoyv +-e-+ K—uachyﬁ-m ]+ y“ [kna.nﬁo +---+ khahﬁeynﬂ’]
NIZN” yn+v lanvanBv Hoeres + thv+Aanﬁv+hyx+P J

Let us enter the following designations:
A, =K_,a,B;

Acro1 =K (o)@e1Be +K_oa,Be
B, =k,0,Bo;

Beihy =kp10p B +kpayBe

Cowv =k K 0, B,

Coin =kyKpoyBy

F, =K, aoB,;

l:"v+l = Kval’}v + Kv+10‘0Bv+l

SU (N, +ND, [KL o Boy” ++ K0t By [k Boy™ +--+ iy, By"" ]

Ay,= K-(v+1)av+'1[30 +K_a_.B;;

A =K 0B,

B =kpn@yBo +ka00By

B = kB,

Coiva =K K@ By +ko Koo B, -
Coin1 = Ky Ko 10uBoy +kp 1 Kooy 1Bg
FS+0' = KGaSBO'

For1 =K (6o1)®s-1Be + K_g0gPe-1
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Then, in inverse values of U={(1/x)=(Int)+(SI)(1/x) coefficients in the enzyme velocity vs.

substrate equation, as y functions, their derivatives and limits will have the following form:

s-1 s
A, +o,y+---+a Yy +o.y

Int=—-=
NZ yn(knan +kn+lan+1y+."+kn+pan+pyp)
limInt=—=2 fimy™; limInt=— 2 limy®
y-»0 knan y—0 y—® hah y-®
n+1)k, 00,1+ m+1)ky_j0p 0 +
yn_l[_ ok e, ‘(i )1 1% ]y+_,_+(( )1 bt Jysﬂ,-l +mkhahys+p}
(Int), = (n-Dkyaja, +(m-Dkyoo,. |
y
y2n (kno'n +kp 10y + """kn+pa'n+pyp)2
. A VR o TR T [(n+1)kn+1°"0an+1 +(n_1)kn°'1a ] PR
t) J=——-1 + —1 "
£§%((m )y) oy yl_l;r(}y (kna‘n)z yg%y
lim((Int)'y)= Mm% 1im yo 4 [(m + Dk, oy 2, + (rzn - l)khahal—l]lim y=2
yo@ k,o, yo (khah) yo o
Sl< (N3 +N7)D, _ v [K o By + e+ K 0 By [+ v [y By + -+ ko, B,y
NIN; yn+V I_anva'nBv Foreeeee + thv+Aath+hyl+PJ
YA, +y'B
limSl = lim%, (n=v#0 an n>v an n<v);
y—0 y—0 y v
A,+B
lim$1 = 275 50, (n=v=0)
¥y
p+o-h "
lim S! = lim y [A:+c]+ y [Be+h] (u¢0),
y=e yoe Cc+h"
o-h
fimS1 = fim Yol Benl (o oepy,
e e C,,
_nAan+vy2v+n—1 _[(n+ 1)AVCMV+1 +(n _I)Av+lcn+v ]y2v+n .
2 ~1
(S])’y = —anCn+vy v _[(V+1)Bncn+v+1 +(V_1)Bn+lcn+v }y2n+v +--- an
y2(n+v) (Cv+n +"'+Cc+hy;‘+p)z
(S—h)Ae+cCc+hyE+26+h_l + [(a_h + 1)A5+0'Cc+h—1 + (S_h _1)A5+0'—1C0+h ]ya+2c+h—2 +ee
sy, =3 (6=0)BenCorny™ " +[(e =0+ )BgyyCornt + (=0 =1Ben1Coun y** 472 4
y

y2(n+v) (Cv+n +eeet Cc+hyl+p )Z

: . -nA,C_,.y"" -vB,C_ v
l Sl ! =1 v 'n+v n~n+v
yl_r)%(( )y ) yl_I)% yn+v (Cv+n )2
llm((SD' )= — [(n * I)AV'C“+V+1 + (n — I)AV‘”C'H'V ]_ [(V + 1)Bll.cn+v+l + (V — 1)Bn+1cn+v]
y—’o ’ (CV+D )2

(n=v#0 an n>v an n<v)

(0=v=0)
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p+o-h) Bh+eyu

oreY

tim ((SD})= lim =+ (u#0; an u=0, o> h)

y-po © Cc+h
[A:+c. + Bs+u ag+h-1 — [Ae+c-l + B:+h—lk:cr+h

im{(SD); )=1im =40, (u=0, o=h)
5»-»(( Ty ¥ (Coum )’
lim((SI)'y )= litn — htcAs+°‘ = , (u:O, 0’<h);
y-® yoe Y (Cc+h)
Int _ D2N1 _ lK aova +---+K asﬂcys“’l ‘

to=""a — ”

0 N3 +N3)D;  (K_oruBoy” +- +K_ 0 gBy™ O Jr (kacaBoy® +--~+khah[3£y"+h)

F, ) F. F,

1 =——Y (v<n); limty=- Y — (v=n limty=——-1limy" ™", (v>n
;I—I‘)I})to A, (v<n) y—0 0 A, +B, (v=n) y—0 0 B, y—)Oy (v>n)

lim tg =— Fio lim y™*, (o<h); lim t, __Fio lim y*~¢, (6>h);
y—-)CD e+h yo® y—® £e+0 y—>®

lim tg=— Fiio lim y*~%, (c=h);

y—® Agig +Beyp vy

- y2v l( F, A, -F A4 )+ o+ (s —g FS+GAS+Gys+e+2x—1 ;_
(to )r _ _ yn+v+1 [(V - n)Fan +eeet (m + p)Fs+oBe+hys+e+h_l ]
y? [Av +-~-+Ae+cy”*]2 +y™*Y 2[AVB,, oot Ay oBey py A ]+ y° [Bn et Be+py”"]2

lim(ty) y = L 2V+1A (v<n); lim(t, ),y =(V;11)2F_Vlim y' 1, (v>n);
[A, ] y->0 [B,} vy~
' . -sJF, . —e—
lim(to) y =—LA2 (v=n); lim t, =Mﬂ lim y*~*~!(c>h)
y—0 [A, +B,] y—> A, yow
+

lim tg =% lim y™ *! (o<h, m#p); (m=p)= lim ty = D lim y~2;D = const)
y— o e+h y—w® y—o® Be+h y—>©

lim to = [(S_S)Bsﬂs +(p'_m)Fs+o S+6_ lim ys—l—:—l

yo® Av +Bs+h y—o
Appendix 7.2

For an alternative classification of modifiers (see Chapter 2) it is required to determine the

position of the intersection points. The coordinates of the intersection point of two lines
(U=a; +bit, U=a, + byt) are:

- a, —a ty —t
t'=-22_1 apdu* =b,b, o2 "to1L 01
b, -b; b —bl
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while t* and U* sign and respectively, the location of intersection point in the coordinate plane is

determined by the signs of derivatives (Int)y, (SD)y, (to)y, (Fig. 7.2).

.o sign(Int)y . sign(ty)y
sign(t’) = ————— = sign(U") =signlb,b, } ——
.. sign(tg);
if b;>0 and b,>0, then = sign(U )=—,gn—(—qzz-; if b1=0 or b,=0, then = U*=0
sign(Sl)}
I ‘_\f =0 I sign(t”) | SERGD sign(U") |__ sign(Sl)y
>0| =0 | <0 |b>0,b>0|>0| =0 | <0
t'<0 t" >0 >0
. - - to0 + >0 + -
uso | US| B 2 0
R S =] —’ =
<0 >0 :E; 0] 0 |=#f(y)]| 0 g 0 0 |=f(y) ]| O
U‘<0 U*<0 @ <0 + 400 — @ <0 — +o0 +
I IV

Fig. 7.2. The location of intersection points vs. (Int)’y, (SI)’y and (t,)’y derivatives’ signs.
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Z. Kometiani — “Kinetic analysis of the multi-sited enzyme systems”

At the start of the last century a kinetic theory of single-site enzyme systems was formulated
and the technique for their full kinetic analysis was perfected. Its essence consisted in the
transformation of a hyperbolic Function into linear dependence that is characteristic only for a
single-site systems. It has been found later that many enzymes because of their multi-site character
are characterized by a curve-linear kinetic dependence. This necessitated to formulate the principles
and elaborate new kinetic parameters for the analysis of such curves.

Z. Kometiani in his monograph presents for the first time the theoretical bases of complete
deciphering of molecular mechanism of the multi-site enzyme system and based on experimental
date develops a statistically valid method for the measurement of main kinetic parameters.

Summary. Scheme of exploration of multi-sited enzyme systems.

Suppose the enzyme velocity depends on two arguments V={(x,y), of which one (x)
represents a substrate or one of the modifiers, while the other (y) represents a modifier in relation to
the substrate or to the first modifier. A complete kinetic study of such enzyme system proceeds in
terms of following scheme:

A general velocity equation

Px Py L. _ _
x"x yn, Zzaijxlyj Sy=Nx TPy + my , hx =Dy + Py,
Ve i=0j=0
Sx SY ..
DD Byx'y! — —
i=0j=0 Ssy=ny+py,+my, hy=n,+p,
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For V,={(x )
1 Determination of the number of sites for essential activators and main

kinetic parameters of activation.
YAV) =, 40,015 1 K, o Vi (§ 44)

2. Determination of the number of sites for full inhibitors and main kinetic

parameters of inhibition.
YA/V) =2n+ba(®) o 5 Ko Vi (§ 4.5)

3. Determination of the minimal number of sites for the ligands of partial effect
of activation or inhibition and their main kinetic parameters.

(U'=0 ’ Uﬂ:o) = pmin7

{an=anp+m(lnx) or U=a, +bp(1/x)}:> Vp, K, (Chapter 6)

The same for Vy=f(y) = [n,Kaand V,];

[m, K and Vi};

[pmin , V; a’ndK_p]
Analysis of geometrical shape of Int={(y), SI=f{(y) and t={(y)
functions and establishment of classification group and subgroup of y
modifier. (§ 7.1, 7.2 and 7.3)

Y

(AT

Deciphering of the enzyme
system molecular
mechanism.
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